University of Technology

Electromechanical Engineering department

Energy and Renewable Energy Engineering Branch

2023 - 2024

First Cycle,

Bachelor's Degree (B.Sc.) - Energy and Renewable Energy Engineering Program

<u> Appendix 2 Program Catalogue</u>

Table of Contents

- 1- Mission and Vision Statement
- 2- Program Specification
- 3- Program Objectives
- 4- Student Learning Outcomes
- 5- Academic Staff
- 6- Credit, Grading and GPA
- 7- Modules
- 8- Contact

1. Mission and Vision Statement

Vision Statement

Aiming to build an engineering establishment in Energy and Renewable Energy field to be outstanding one among the top international university.

Mission Statement

- 1- Prepare our students for successful careers in the energy and renewable energies profession,
- 2- Conduct high quality and innovative research, and
- 3- Serve the community and industry providing educational and research resources.

For future plans, the branch intends to cover all required courses in energy sectors in Iraq, including gas, steam, renewable energies (solar, wind and others, added recently), nuclear, water power plants. Through the communications with Ministry of Electricity (symposiums, industrial advisory board meeting), the branch developed his courses according to the needs of the Ministry which is responsible for all power plants in Iraq.

2. Program Specification

Program Code	BSc-EREE	ECTS	240
Duration	4 Year, 8 Semesters	Method of Attendance	Full Time

Subject Areas Requirements

The Energy and Renewable Energy Engineering program produces graduates who are prepared to enter the practice of energy and renewable energies engineering. For two paths, there are three major components of the program: (1) foundation in the mathematical and physical sciences, (2) engineering topics in both mechanical and electric systems with design applications, and (3) general education in the humanities, English course and ethics.

Mathematics and Physical Sciences

The engineering science fundamentals and engineering design skills are built upon the basic mathematics and physical sciences. The mathematics work begins with a three levels course (six courses) sequence on differential and integral calculus. The first two courses include topics in limits, derivatives, and the integrals of functions of one variable, work on partial derivatives and multiple integrals is presented. Vector analysis and three-dimensional analytical geometry, solution of the first and second order linear differential equations with numerous applications, Laplace transforms, power series solutions, numerical methods, linear systems and numerical analysis with engineering applications in numerical differentiation and integration. With this foundation in mathematics, our students have necessary tools for applications in analysis and design.

Physics (two courses) in the first level includes materials science, classification of materials, atomic structure and the type of bonding forces, types of materials and their applications and the mechanical material properties.

It is noted that the number of hours for Math and Basic Science is 30 hours and it's satisfies ICAEE requirement.

Engineering Topics

The aim of the program is to graduate students capable to work as mechanical and electrical engineer in energy and renewable energies field. The engineering topics are divided into four parts; preliminary joint courses, mechanical courses, electrical courses and final joint courses.

Preliminary joint courses:

- Workshop Training; Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining (lathe, milling, drilling), forging, denting, filings, forging, welding, and casting.
- Computer Courses; Computer Science (Visual BASIC programs), Advanced Programming (C++), Application of Advance Computer (Microprocessors and MATLAB languages).
- Industrial Engineering, determine the most effective ways for an organization to use the basic factors of production.
- Engineering and Machine Drawing is to teach students manual drafting and

dimensioning of views, explains the principles of orthographic views, multi view projection and sectional view drawing.

Engineering courses are divided into two parts;

Mechanical Courses,

- Engineering Mechanics. This unit of study aims to provide theoretical knowledge and principles of Statics and Dynamics.
- Strength of Material and Vibration. In this course, students will learn; the behavior of solid bodies under loads and deflections, study the simple bending theory for beams and the simple torsion theory for shafts circular and non-circular, deflection of beams, complex stresses, compounds beam and discussion the principles of free & forced vibrations
- Control System, illustration and discussion the Main Theoretical Principles of control systems and understanding of using different system Damping.
- Thermodynamics, Fundamental thermodynamic concepts including system, state, state postulate, equilibrium, process and cycle, Heat, work, 1st Law of Thermodynamics, Properties of a substance, Energy balances for idealized closed systems, Energy and mass balances for idealized control volumes, 2nd Law of Thermodynamics, Carnot cycles, thermal efficiencies, Entropy, isentropic processes, isentropic efficiencies, idealized power cycles (Otto, Diesel and Rankine Cycles).
- Fluid Mechanics. This course provides a working knowledge of Fluid Mechanics and Illustration and discussion the principles of Principle of fluid motional flow classification Bernoulli's equation as well as applications of Bernoulli's equation and anther subject in Fluid Mechanics.
- Heat Transfer; teach theoretical basics of the conduction, convection and radiation heat transfer Coincided with a laboratory experiment.
- Fluid Machinery, Illustration and discussion the principles of operation for fluid machinery and their types.
- Power Plants, studying the thermal analysis of the steam or gas turbine plants.
- Combustion and Air Pollution, to explain concept of various forms combustion process & air pollution problem.
- Nuclear Power Plants, illustration the principles of Nuclear Power Plant operation and their types, study main four elements of nuclear core, their kinds, and desirable features, study thermal design of the PWR and BWR and study thermodynamic, control of the Nuclear Power Plant.
- Renewable Energy Sources, explain concept of various forms of renewable energy (solar, wind, geothermal, bio and other kinds of renewable energies).
- Renewable Energy System, concentrates on solar or wind systems.

Electrical Courses,

• Fundamental of Electric Engineering (illustration and discussion the fundamental f electric engineering and definition, proceeding to the student the DC Electrical Circuits, series, parallel, series-parallel and identify the equations voltages & current for circuits above).

- Electric and Electronic Circuits, in electrical engineering, we are often interested in communicating or transferring energy from one point to another. To do this requires an interconnection of electrical devices. Such interconnection is referred to as an electric circuit.
- Electrical Machines, Illustration and discussion the principles of DC and AC machines, description of the machine, as well as its operation in electrical machines.
- Power systems, Giving Knowledge about the generation, transmission, and distribution type systems.
- Power system analysis, illustration and discussion the principles of power system analysis.
- Power Electronics and Electrical Drives, theoretical and practical experiences in the field of power electronics and electrical drives such as AC to DC converters (Rectifiers), DC to AC converters (invertors), DC to DC converters (DC choppers), AC to AC converters (AC voltage regulator and cycloconverter), speed control of DC motors, and speed control of AC motors (inductions and synchronous motors).

Final Joint Courses,

- Electromechanical Equipment, this course specification provides the main features of the Electromechanical Systems and Devices.
- Power Plant Operation and Maintenance, illustration and discussion the principles of Power plant operation and maintenance.
- Energy Efficiency concentrates on energy efficiency for mechanical and electrical applications.

Others Including General Education

The third major area of the curriculum is the general education component. The University of Technology has a mandated General Education Requirements for all degrees. To satisfy the General Education Requirements the Energy and Renewable Energies Engineering Program set required courses in the general education component as follows:

- English Language (two levels), this course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.
- Human Rights (second level), Freedom and Democracy, the course covers the concept of human rights and development, definition, classes, properties, and the most important human rights conventions and declarations and international conventions on human rights and human rights in religions and the role of non-governmental organizations in this field and other human rights issues. The substance of freedom and democracy include the concept of freedom and kinds, democracy and the types and components, individual liberty and freedom forced to reconcile the sovereignty, freedom, democracy during the Greeks time, lobbyists, the most important theories on the nature of election, the rights of

minorities in democratic governance and other topics that make the student familiar with the issues.

- Ethics in Engineering (fourth level), concentrates on professional Ethics.
- Sport (first level), concentrates on different sport activities.

Major Design Experience

In the last year, students take Senior Capstone Design, which is the final major design course. In this course, students learn how to apply the basic engineering science and design principles to formulate a design problem, and then follow recommended process to complete the design project. Students are required to demonstrate their ability to use the knowledge of mechanical and electrical courses for the whole undergraduate curriculum. Some professional components if not taught in other courses, such as life- long learning to keep knowledge up to date, are covered in this course. For the capstone design experience. The students are typically in teams of three people. At the end of the year, all the design teams present their capstone design projects. All the EREE faculty members, representatives from industry and EREE Industrial Advisory Council members are invited at the presentation and they also serve as evaluators for the capstone design projects. The evaluation includes the project evaluation in three parts (overall technical content, presentation, and response to questions), assessment of the related Graduate Outcomes and comment.

3. Program Goals (objectives)

- 1- Enter the energy and renewable energies engineering profession as practicing engineers and consultants with prominent companies and organizations in diverse areas that related to energy and renewable energies engineering.
- 2- Pursue graduate education and research at major research universities in Energy and Renewable Energies engineering, and related fields
- 3- Advance in their chosen fields to supervisory and management positions
- 4- Engage in continued learning through professional development
- 5- Participate in and contribute to professional societies and community services

4. Student (Graduate) Learning Outcomes

Students from the Energy and Renewable Energies program will attain (by the time of graduation):

- 1. An ability to identify, formulate, and solve engineering in energy and renewable energies engineering problems by applying principles of engineering, science, and mathematics.
- 2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline

- 3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 4. An ability to communicate effectively with a range of audiences
- 5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 6. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge
- 7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment

Faculty Name	Highest Degree Earned- Field and Year	Rank	Email
Jalal Mohammed Jalil	PhD. in Mech. Eng. (1989)	Prof.	50003@uotechnology.edu.iq
Ameer Abed Jaddoa	PhD. in Mech. Eng. (2016)	Prof. Assistance	Ameer.A.Jaddoa@uotechnology.edu.iq
Muhannad Z. Khalifa	PhD. in Mech. Eng. (2003)	Prof.	Muhannad Z. Khalifa @uotechnology.edu.iq
Kays A. Al-Tae'y	PhD. in Mech. Eng. (2006)	Prof. Assistance	Kays A. Al-Tae'y @uotechnology.edu.iq
Khalid Faisal Sultan	PhD. in Mech. Eng. (1998)	Prof.	Khalid Faisal Sultan @uotechnology.edu.iq
Ibtisam A. Hassan	PhD. in Mech. Eng. (1998)	Prof.	Ibtisam A. Hassan @uotechnology.edu.iq
Hussein M. Salih	PhD. in Mech. Eng. (2006)	Prof.	Hussein M. Salih @uotechnology.edu.iq
Aseel J. Mohammed	PhD. in Mech. Eng. (2006)	Prof. Assistance	Aseel J. Mohammed @uotechnology.edu.iq
Sahar R. Al- Sakini	PhD. in Elect. Eng. (2003)	Prof. Assistance	Sahar R. Al- Sakini @uotechnology.edu.iq
Mohammed H. Jibal	PhD. in Mech. Eng. (2016)	Prof.	Mohammed H. Jibal @uotechnology.edu.iq
Hayder Q. Alwan	PhD. in Mech. Eng. (2017)	Prof. Assistance	Hayder Q. Alwan @uotechnology.edu.iq
Karema A. Hamad	MSc. Mech. Eng. (2003)	Prof. Assistance	Karema A. Hamad @uotechnology.edu.iq

5. Academic Staff (Faculty)

Hadia K. Judran	PhD. in Physics (2009)	Prof. Assistance	Hadia K. Judran @uotechnology.edu.iq
Zainab B. Abdulla	MSc. Elect. Eng. (2001)	Lecturer	Zainab B. Abdulla @uotechnology.edu.iq
Hussain G. Jabir	MSc. Elect. Eng. (2004)	Prof.	Hussain G. Jabir @uotechnology.edu.iq
Hashmia S. Dakheel	MSc. Elect. Eng. (2000)	Lecturer	Hashmia S. Dakheel @uotechnology.edu.iq
Raed A. Jessam	PhD. Mech. Eng. (2018)	Prof. Assistance	Raed A. Jessam @uotechnology.edu.iq
Adel Hannon Ayaal	PhD. Mech. Eng. (2017)	Prof. Assistance	Adel Hannon Ayaal @uotechnology.edu.iq
Sammar J. Ismail	PhD. in Elect. Eng. (2017)	Lecturer	Hussain S. Abid @uotechnology.edu.iq
Hussain S. Abid	PhD. in Mech. Eng. (2017)	Prof. Assistance	Hussain S. Abid @uotechnology.edu.iq
Mahmoud M. Mahdi	PhD. in Mech. Eng. (2005)	Prof. Assistance	Mahmoud M. Mahdi @uotechnology.edu.iq
Sundus S. Jumaah	PhD. in Mech. Eng. (2017)	Lecturer	Sundus S. Jumaah @uotechnology.edu.iq
Wafaa Abood Makee	MSc. Mech. Eng. (2002)	Lecturer Assistance	Wafaa Abood Makee @uotechnology.edu.iq
Waleed Yousif Shahb	MSc. Mech. Eng. (2017)	Lecturer Assistance	Waleed Yousif Shahb @uotechnology.edu.iq
Ayad K. Khlief	PhD. Mech. Eng. (2019)	Prof. Assistance	Ayad K. Khlief @uotechnology.edu.iq
Ali Abdulwahab Ismaeel	PhD. Mech. Eng. (2019)	Prof. Assistance	Ali Abdulwahab Ismaeel@uotechnology.edu.iq
Ahmed Kamil Hasan AL-ALI	PhD. Mech. Eng. (2020)	Lecturer	Ahmed Kamil Hasan AL-ALI @uotechnology.edu.iq
Akram Hamzah Abed	PhD. Mech. Eng. (2020)	Lecturer	Akram Hamzah Abed @uotechnology.edu.iq
Mazin A. Hamzia	PhD student	-	Mazin A. Hamzia @uotechnology.edu.iq
Luay A. Rashed	PhD student	-	Luay A. Rashed @uotechnology.edu.iq
Abdulmunem R Abdulmunem	PhD. Mech. Eng. (2019)	Lecturer	<u>Abdulmunem R</u> <u>Abdulmunem</u> @uotechnology.edu.iq
Nasar F. Hassan	PhD. Mech. Eng. (2012)	-	Nasar F. Hassan @uotechnology.edu.iq
Assam K. Fadhal	PhD student	-	Assam K. Fadhal @uotechnology.edu.iq

Hind D. Salman	PhD student	 @uotechnology.edu.iq

6. Credit Grading and GPA

Credits

University of Technology is following the bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structure and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who are failed a course. The grading system is defined as follows:

		(Grading Schen مخطط الدرجات		
Group	Grade	التقدير	Marks (%)	Definition	
Success	A - Excellent	امتياز	90 - 100	Outstanding	
Group	B-very Good	جيد جدا	80 - 89	Above average with some errors	
(50-100)	C - Good	جيد	70 - 79	Sound work with notable Error	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work with met minimum criteria	
Fail Group	FX – Fail	راسب	45-49	More work required but credit awarded	
(0 - 49)		قيد			
		المعالجة			
	F - fail	راسب	0 - 44	Considerable amount of work required	
Notes:					
Marks with decimal places above or below 0.5 will rounded to the higher or lower full mark (for					
example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54					

example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The university has a policy NOT to condone "near pass fail" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Calculation of the Cumulative Grade Point Average (CGPA)

The CGPA is calculated by the summation of each module score multiplied by ita ECTS, all are divided by the program total ECTS.

CGPA of a 4 – year B.SC. Degrees:

CGPA = $[91^{st} \text{ module score x ECTS}) + (2^{nd} \text{ module score x ECTS}) + ...]/240$

7. Curriculum/Modules

Code	Module	USSWL	SSWL	ECTS	Туре	Pre-request
WORSH11	Workshops	14	186	8	S	-
ENLA112	English	67	33	4	S	-
ENLATI2	Language I					
MATH113	Mathematic s	87	63	6	В	-
WIAIIIIIS	Ι					
PHYS114	Physics I	87	63	6	В	-
	Engineering	77	48		С	-
ENME115	Mechanics			5		
	II					
TERE116	Technical	42	33	3	S	-
TEREITO	Report					
SPOR117	Sport	17	33	2	S	-

Semester 1: 30 ECTS: 1 ECTS = 25 hrs

Semester 2: 30 ECTS: 1 ECTS = 25 hrs

Code	Module	USSWL	SSWL	ECTS	Туре	Pre-request
COSC121	Computer	27	48	3	S	-
COSCI2I	Science I			5		
MATH122	Mathematic s	87	63	6	В	-
	II					
PHYS123	Physics II	87	63	6	В	-
	Fundamentals	22	78		С	-
FUEE124	of Electrical			4		
FUEE124	Engineering			4		
	(AC + DC)					
	Fundamentals	37	63	4	S	-
FATD125	of AutoCAD					
	tools Drawing					
ENME1	Engineering	27	48	3	С	
ENIVIEI	Mechanics II			3		-

8. Contact:

Program Manager: Ameer Abed Gaddoa, Prof. Assistance, PhD in Mech. Eng. (2016)Program Coordinator: Ahmed Kamil Hasan Al-Ali, Lecturer, PhD Electrical Eng. 2020

<u>Appendix 3 Modules Catalogue</u>

Table of Contents

- 1- Overview
- 2- Undergraduate Modules
- 3- Contact
- 1. Overview

This catalogue is about the courses (modules) given by the program of Energy and Renewable Engineering to gain the Bachelor of Science degree. This program delivers 48 Modules with 6000 total student workload hours and 240 total ECTS. The module deliver is based on the Bologna Process.

2. Undergraduate Courses

First and Second Semesters

Module 1

Code	Course/module Title	ECTS	Semester	
WORSH11	Workshop	8	1, 2	
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)	
-	- / - / 6 / -	93	7	
Description				
Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining (lathe, milling, drilling), forging, denting, filings, forging, welding, and casting.				

First Semester

Code	Course/module Title	ECTS	Semester
ENLA112	English Language I	4	1
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
2	-	33	67
Description			

This course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.

Module 3

Code	Course/module Title	ECTS	Semester
MATH113	Mathematics I	6	1
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
4	-	63	87
Description			

The mathematics work begins with differential and integral calculus, limits, derivatives, and the integrals of functions of one variable, work on partial derivatives and multiple integrals is presented.

Module 4

Code	Course/module Title	ECTS	Semester		
PHYS114	Physics I	6	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
4	-	63	87		
Description					
The aims which can be achieved during teaching this course program are concept of materials science, classification of materials, atomic structure and the type of bonding forces.					

Code	Course/module Title	ECTS	Semester		
ENME115	Engineering Mechanics	5	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
1	- /1/-/1	48	77		
	Description				
This unit of study aims to provide theoretical knowledge and principles of Statics and					
Dynamics.					

Code	Course/module Title	ECTS	Semester
TERE116	Technical Report	3	1
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
2	-	33	42
Description			
This course considers the following: what is writing, reasons for writing, performing technical			
studies, writing strategy, document options, criteria for good technical writing, writing style,			
using illustration and fe	using illustration and formal report.		

Module 7

Code	Course/module Title	ECTS	Semester
SPOR117	Sport	2	1
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
2	-	33	17
Description			
This course considers the main sport games.			

Second semester

Module 1

Code	Course/module Title	ECTS	Semester
COSC121	Computer Science I	3	2
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
1	- /2/-/-	48	27
Description			
Windows, Computer Science (Visual BASIC programs).			

Code	Course/module Title	ECTS	Semester
MATH122	Mathematics II	Mathematics II 6	
Class (hr/w)	Lect/Lab./Prac./Tutor	Lect/Lab./Prac./Tutor SSWL(h/sem) USW	
4	-	- 63	
Description			
Vector analysis	and three-dimensional analyt	ical geometry are inclu	ided in this course.

Topics include solution of the first and second order linear differential equations with numerous applications.

Module 3

Code Course/module Title		ECTS	Semester
PHYS123 Physics II		6	2
Class (hr/w) Lect/Lab./Prac./Tutor		SSWL(h/sem)	USWL (h/sem)
4	-	63	87
Description			
This course considers the types of materials and their applications and the mechanical material properties.			

Module 4

Code	Course/module Title	ECTS	Semester	
FUEE124	Fundamentals of Electrical	4	2	
	Engineering (AC + DC)			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
3	- /2/-/-	78	22	
	Description			
In this course, students learn some details of Fundamental of AC and DC circuits and their analysis by using different methods, Firstly, they are taken the atomic structure to understand the concept of current and voltage, then they are given the Kirchhoff's current and voltage				
laws and how they can employ them to analysis of the AC and DC circuits. Besides, the analysis methods are presented to learn the students the analysis of the AC and DC circuits. In				
addition, the analysis	sis the AC and DC circuits by ne	twork theorems are g	iven.	

Code	Course/module Title	ECTS	Semester
FATD125	Fundamentals of	4	2
	AutoCAD tools Drawing		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
-	- / 4 / - / -	63	37
Description			
Fundamental of Electric Engineering (illustration and discussion the fundamental f electric engineering and definition, proceeding to the student the DC Electrical Circuits, series, parallel, series-parallel and identify the equations voltages ¤t for circuits above).			

Code	Course/module Title	ECTS	Semester
ENME126	Engineering Mechanics	3	2
	II		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
1	- / 1 / - / 1	48	27
	Description		
In this course of engineering mechanics I, students learn how to apply the basic principles of engineering, physics and mathematics' to analysis and solve Three-dimensional force system, component forces for three dimensions ,Moment in three-dimensional force system, dot product, couple in three-dimensional force system, couple-force system in three-dimensional force system, Resultant in three-dimensional force systems, Equilibrium, free body diagram and			
Types of friction problems			

3. Contact:

Program Manager: Ameer Abed Gaddoa, Prof. Assistance, PhD in Mech. Eng. (2015) **Program Coordinator:** Ahmed Kamil Hasan Al-Ali, Lecturer, PhD Electrical Eng. (2020)

<u> Appendix 4 Modules Description Form</u>

First and Second Semesters

	Mo	dule Information	
Module Title	Wo	kshops	Module Delivery
Module Type	Su	pport	Theory
Module Code	WO	RSH11	
ECTS		8	🔲 Lab
Credit/year			Tutorial
SWL/year		200	Practical
			Seminar
Module level	1	Semester of Delivery	1, 2
Module Leader	Training and	College	

	Workshops Center		
Module Leader	Prof.	e-mail	twc@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	Ph.D.
		Qualification	
Peer Reviewer Name	-	e-mail	-
Scientific Committee	1/6/2023	e-mail	-
Approval Date			
-	-	Version Number	1

	Relation with other Module	es	
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learn	ing Outcomes and Inductive Contents	
Module Aims	1-Preparing applied engineers in the field of engineering sciences who	
	are distinguished by a high level of knowledge and technological	
	creativity, in line with the strict standards adopted globally in quality	
	assurance and academic accreditation of the corresponding engineering	
	programs, while adhering to the ethics of the engineering profession.	
	2. Enable the student to know and understand work systems, risks, and	
	the factors surrounding them.	
	3. Enable the student to know and understand theoretical principles in	
	handicrafts and measurements.	
Module Learning	1- To familiarize the student with the vocabulary of occupational safety	
Outcomes	and its importance in the field of work.	
	2- Acquisition of the student's manual operation skills, for example	
	(Filings and Tinsmith workshops), and mechanical operation skills, for	
	example (Turning).	
	3- Acquisition of the student's mechanical forming skills, for example	
	(Casting and Blacksmithing).	
	4- The student acquires basic engineering skills such as Welding,	
	Carpentry, and Electrical installations that serve him in the professional	
	field.	
	5- Enabling the student to operate the various machines and devices in	
	mechanical operations and formation.	
	5- Cooperative learning by working collectively.	
Inductive Contents		

T	1	
	1.	Introducing the student to the basics of the art of turning and milling, types of cold working machines, the skill of dealing with them, choosing metals, operational tools, and methods of measurement and standardization
	2.	Introducing the student to the basics of the art of casting, hot forming, metal selection, method of working on casting furnaces and tools, and manufacturing casting molds
	3.	
	4.	
	5.	Introducing the student to the basics of the art of plumbing, leveling surfaces, the skill of using tools, manufacturing and installing geometric shapes, and methods of measurement and standardization
	6.	Introducing the student to the basics of the art of blacksmithing, cold and hot forming of metals, the method of hardening them, and the skills of dealing with hand tools, forming machines, and heating furnaces
	7.	Introducing the student to the basics of the art of filing and manual operation of metals with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and the methods of measurement and standardization
	8.	Introducing the student to the basics of the art of welding, the installation and assembly of metals, the types of welding machines, the skills of dealing with them, the types of welding, and the methods of measurement and standardization
	9.	

Learning a	and Teaching Strategies
Strategies	-

Student Workload (SWL)				
Structured SWL (h/sem)	93	Structured SWL (h/w)	6.00	
Unstructured SWL (h/sem)	7	Unstructured SWL (h/w)	0.46	
Total SWL (h/sem)	100	-	-	
Structured SWL (h/year)	186	Structured SWL (h/w)	6.00	
Unstructured SWL (h/year)	14	Unstructured SWL (h/w)	0.46	
Total SWL (h/year)	200	-	-	

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant
			(Marks)		Learning
					Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments		10%		All
	Projects /	Every 3 weeks	-	Continuous	-
	Practice				
	Report	-	10%	-	-
Summative	Midterm	-	20%	-	-
Assessment	Exam				
	Exam	Every 3 weeks	50%	Continuous	All
	Total assessment			-	_

Delivery Pl	Delivery Plan (Weekly Syllabus)				
	Materials Covered				
Week 1	Welding workshop.				
	-Occupational safety and its importance in welding workshops.				
	-Introduction to the basics of welding.				
	-Electric arc exercise.				
	-An exercise for welding straight lines in a circular motion (helical).				
Week 2	Welding workshop				
	- An exercise for welding straight lines with a crescent movement and other				
	welding methods				
	-Construction welding exercise.				
Week 3	Welding workshop.				
	-Welding two pieces together.				
	Written exam in practical exercises.				
Week 4	Casting workshop				
	-Occupational safety and its importance in plumbing workshops.				
	-Introduction to the basics of metal casting.				
	-Simple wooden disc exercise.				
	Half workout.				
Week 5	Casting workshop				
	Wheel exercise.				
	Pushing arm exercise.				
Week 6	Casting workshop.				
	-Complete pulley exercise.				
	-Circular pole exercise.				
	-Written exam in practical exercises.				

Week 7	Blacksmith Workshop
	-Occupational safety and its importance in blacksmithing workshops.
	-Introduction to the Basics of Blacksmithing.
	- Barbell adjustment exercise.
	-Eight-star exercise.
	- Exercise forming the number eight in English.
	-Six formation exercises in English.
Week 8	Blacksmith Workshop
	-An exercise forming the number five in English.
	- Exercise forming the number nine in English.
	An exercise in forming an iron model in the form of a circle
Week 9	Blacksmith Workshop
	- S-shape exercise.
	- Air hammer hot barbell exercise.
	- Exercise to form a circle on an electric bending machine.
	- Exercising cold and hot ornament formation.
	A written exam in practical exercises
Week 10	Automotive Workshop
Week 10	-Occupational safety and its importance in car maintenance workshops.
	-An introduction to cars and their basic parts.
	-Parts of the engine, how it works, types of engines, and methods of
	classification.
Week 11	Automotive Workshop
WCCK II	- Open the engine and identify the parts
	-Lubrication system
	-Cooling system.
Week 12	Automotive Workshop
WEEK 12	-The fuel system.
	-The old and new ignition circuits.
	-Written exam in practical exercises.
Week 13	Turning Workshop
WEEK 13	-Introduction to lathe machines and identifying their parts
	-Measuring tools and the use of an oven measuring instrument -Circular column lathing exercise on different diameters.
	-Circular column lathing exercise on different diameters.
Week 14	Turning Workshop
WCCK 14	-Exercise using the pen (semicircular R) brackets.
	An exercise in making different angles using a pen (square + angle pen 55).
Week 15	Turning Workshop
WEEK 15	- Making shaft with different diameter exercises using (left and right pen)
	- Workout (Tube Connection).
	-Written exam in practical exercises.
Week 16	Fitting workshop
WEEK IU	
	Occupational safety and its importance in filing workshops
	-An introduction to the basics of filing
	-Pen holder exercise "preparation and preparation"

Week 17	Fitting workshop
	Pencil holder exercises finishing and assembling.
Week 18	Fitting workshop
	-The catcher exercise.
	- Clamping exercise.
	Written exam in practical exercises.
Week 19	Carpentry workshop
	-Occupational safety and its importance in carpentry workshops.
	- An introduction to carpentry, its types, types of wood, tools used, and
	preparation Preparing the tools used
	Face modification exercise using the reindeer
Week 20	Carpentry workshop
	Garden fence work and how to connect its parts, the eight-star exercise
Week 21	Carpentry workshop
	- Wood smoothing exercise using smoothing paper
	- Wood dyeing exercise in three stages
	Final smoothing and varnishing exercise
	Written exam in practical exercises
Week 22	
	The tinsmith workshop
	Occupational safety and its importance in plumbing workshops
	An introduction to plumbing, its tools, and plumbing stages
	Planning and marking exercise on metal plates
Week 23	The tinsmith workshop
	Geometric shapes
	Types of individuals and methods of individuals
	Geometric shape individuals exercise on a metal board
Week 24	The tinsmith workshop
	Cone members exercise
	- Exercise of cylinders with an oblique cut
	Roll forming operations
	Connection without the use of an intermediary
	Written exam in practical exercises
Week 25	Electric Workshop
	Occupational Safety and its importance in electrical workshops
	An introduction to the basics of electrical installations
	- Linking a simple circuit consisting of a lamp to the control of a single-way
	switch.
	Connect two lamps in series with one-way switch control.
	Connecting two lamps in parallel with the control of a single road switch.
	Connect two lights with one-way dual switch control.
Week 26	electric Workshop
	Connect a fluorescent lamp circuit to a one-way switch control
	Connecting an electric supply socket circuit to the control of a separate or
1	combined one-way switch

	Written exam in practical exercises
Week 27	electric Workshop
	Occupational Safety and its importance in blacksmithing workshops
	Introduction to the basics of Blacksmithing
	- Barbell adjustment exercise
	Eight-star exercise
	- Exercise forming the number eight in English
	Exercise forming the number six in English
Week 28	supplementary training curriculum
	Welding workshop
	Plumbing workshop
	Blacksmith's workshop
Week 29	supplementary training curriculum
	- Automotive workshop
	- Turning workshop
	Fitting workshop
Week 30	supplementary training curriculum
	Carpentry workshop
	The plumbing workshop
	electric Workshop

Learning and Teaching Resources				
-	- Text			
		library		
Required Texts Workshop technology and measurements,		yes		
	Ahmed Salem Al-Sabbagh,			
Recommended Texts	-	-		
Websites	_	-		

First Semester

Module Information					
Module Title	English	Language I	Module Delivery		
Module Type	Su	ipport	Theory		
Module Code	EN	LA112			
ECTS Credit		4	🔲 Lab		
SWL	100		Tutorial		
			Practical		
			Seminar		
Module level	1	Semester of Delivery	1		
Module Leader	Ahmed Kamil	College	Electromechanical Eng.		

	Hasan Al-Ali		Dept.
Module Leader Academic Title	Lecturer	e-mail	eme@uotechnology.edu.iq
Module Tutor	-	Module Leader's Qualific ation	PhD. Elec. Eng.
Peer Reviewer Name	-	E-mail	50035@uotechnology.edu.iq
Scientific Committee Approval Date	-	E-mail	-
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductiv	e Contents		
Module Aims	 In this course, students will learn: Proceeding to the Student the benefits of studying English Language as Second language Giving Knowledge about using the Technical Terminologies in their studies Understanding of using the scientific English language in the Academic Program Giving knowledge of how write, describe, typing the reports in English 		
Module Learning Outcomes	 In this course, - Computer Science students will learn: 1. Introduction to Computer. 2. Computer Hardware (Microprocessor, Memory, Input and Output Devices). Programming Languages, Operating Systems / Types of Files and Directories 3. Numbers representation (Binary, Decimal, Octal, Hexadecimal) 		

	 4. Logic Gates 5. Algorithm and Flow Chart 6. Programming in Visual Basic: a. Introduction to visual basic b. Elements of the Integrated Development Environment (IDE)
	 6. Programming in Visual Basic: a. Introduction to visual basic b. Elements of the Integrated Development Environment
	a. Introduction to visual basicb. Elements of the IntegratedDevelopment Environment
	b. Elements of the Integrated Development Environment
	Development Environment
	1
	(IDE)
	(IDE)
	c. Toolbox (Properties and its
	Events)
	d. Built the project by using
	Toolbox and Properties Window
	e. Built the project by using Code
	Module
	f. Input box and Messages box
	g. Visual Basic Operators
	h. Conditional Statements (IF,
	Select Case)
	7. One Dimensional Array
	8. Two Dimensional Array Subroutine
Inductive Contents	a. Parts of Speech
	What are the parts of speech
	 Noun
	Pronoun
	 Verb
	Adjective
	• Adverb
	-
	-
	• Why does it use.
	• How does it use.
	c. Your world (unit Two).
	• How to know your world.
	• How to communicate with each
	other
	• Knowing your Nationality.
	• Knowing your Nationality. d. ALL ABOUT YOUFAMILY AND
	• Knowing your Nationality.
	• Knowing your Nationality. d. ALL ABOUT YOUFAMILY AND
	 Knowing your Nationality. d. ALL ABOUT YOUFAMILY AND FRIENDS
	 How does it use. c. Your world (unit Two). How to know your world.

FAMILY.• Jobs.e. Everyday Life• Sport.• Food.• Drinks.• Activities.f. My favorite• Questions words.• Pronouns.• Demonstratives.• Adjectives.• Favorites.g. Where do I live• ROOMS.• KITCHEN FURNITURE.• Bedroom Furniture.• Living Room Furniture.• Bathroom.• Grammar (difference betwee SOME and ANY).• DIRECTIONS• Grammar (difference betwee BUT&AND).• Because and SO.

Learning and Teaching Strategies				
Strategies The branch use a problem based learning which new and				
	student active method. The method help the student getting			
the program outcomes.				

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.00					
Unstructured SWL (h/sem) 67		Unstructured SWL (h/w)	4.46		
Total SWL (h/sem) 100					

Module Evaluation					
	-	Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3

Assessment	Assignments	1	10%	7	LO # 4 , 5
Projects / Lab.		-	-	-	-
	Report	1	10%	11	6
Summative	Midterm Exam	1.5 hr	20%	9	LO # 1 - 6
Assessment Final Exam		3 hr	50%	17	All
Total assessment			100%	-	_

	Delivery Plan (Weekly Syllabus)				
	Materials Covered				
Week 1	Parts of speech, Introduction of English language, Sentences				
Week 2	Introduction				
Week 3	Countries				
Week 4	Jobs				
Week 5	Family				
Week 6	The time				
Week 7	preposition of time				
Week 8	My favorites				
Week 9	Rooms and furniture				
Week 10	Mid-term Exam				
Week 11	Question				
Week 12	Saying years				
Week 13	Questions (past simple)				
Week 14	present continuous				
Week 15	Positive (present continuous)				
Week 16	Preparatory week before the final Exam				

Learning and Teaching Resources				
	Available in the			
		library		
Required Texts	John and Liz Soars "New Headway Plus"	YES		
	Student's book.			
Recommended Texts	John and Liz Soars "New Headway Plus"	YES		
	Workbook without key			
Websites	-	-		

Module Information				
Module Title	Module Title Mathematics I Module Delivery			

Module Type	D	Basic	Theory	
Module Code	MATH113			
ECTS Credit		6		
SWL	1	150	Tutorial	
	130		Practical	
			Seminar	
Module level	1	Semester of	1	
		Delivery		
Module Leader	Karema A.	College	Electromechanical Eng. Dept.	
	Hamad			
Module Leader	Module Leader Prof.		eme@uotechnology.edu.iq	
Academic Title	Assistance			
Module Tutor	-	Module Leader's	MSc. Mech. Eng.	
		Qualification		
Peer Reviewer	Peer Reviewer -		Karema.A.Hamad@uotechnology.edu.iq	
Name				
Scientific	-	e-mail		
Committee				
Approval Date				
-	-	Version Number		

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	The student will learn the first part of	
	mathematics	
Module Learning Outcomes	In this course, for students will learn	
	1. Introduction, Quadratic Formula,	
	Binomial Formula	
	2. Function (Inverse Hyperbolic	
	Function).	
	3. Limits &Continuity.	
	4. Matrices (Operation, inverse of Square	
	Matrix, Eigen values & Eigen	
	Vectors).	
	5. Volumes (Volumes by slicing, Disk	
	Around x-axis, Washer Around x-axis,	
	washer around y-axis).	
	6. Functions (Inequality, Intervals,	
	Domain & Range)	
	7. Determinants (Properties, Grammer's	

	Rule, Applications) 8. Functions (Trigonometric Functions, Inverse Trigonometric Functions, Logarithmic Function)
Inductive Contents	 In this course, students will learn: Introduction, Quadratic Formula, Binomial Formula Straight Line, Conic Sections (Circle, Parabola, Ellipse, Hyperbola) Functions (Inequality, Intervals, Domain & Range) Functions (Inverse Functions, Drawing Function, Absolute Value) Functions (Trigonometric Functions, Inverse Trigonometric Functions, Inverse Trigonometric Functions, Logarithmic Function) Function(Natural Logarithmic Function, Exponential Function, Hyperbolic Functions) Functions (Inverse Hyperbolic Functions) Limits & Continuity Determinants (Properties, Grammer's Rule, Applications) Matrices (Operations, Inverse of Square Matrix, Eigen Values & Eigen Vectors) Polar Coordinates Complex Numbers Vectors, Properties of Vectors Vectors in Free Space Applications of Vectors.

Learning and Teachi	ng Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)87Unstructured SWL (h/w)5.80				

Total SWL (h/sem)	150	-	_
-------------------	-----	---	---

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 - 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Introduction, quadratic formula, binomial formula
	Straight line, conic section (circle, parabola,
	Inequality, intervals, domain & range, Inverse function
Week 2	Drawing function, Absolute value, Trigonometric function Inverse trigonometric function
Week 3	logarithmic function, natural logarithmic function, Exponential function
Week 4	Hyperbolic functions
	Inverse hyperbolic function
Week 5	Limits and continuity
Week 6	Matrices & Determinants, properties, Grammers Rule
Week 7	Applications, Matrices (operations)
Week 8	Inverse of Square matrix
Week 9	Eigen values & Eigen vectors
Week 10	Mid-term Exam
Week 11	polar coordinates
Week 12	Complex Numbers, Applications of complex number
Week 13	Vectors
Week 14	properties of vectors
Week 15	vectors in free space, Applications of vectors
Week 16	Preparatory week before the final Exam

Learning	and	Teaching	Resources
----------	-----	----------	-----------

	Text	Available in the
		library
Required Texts	Thomas Calculus, George B. Thomas et al, 12 th , edition, 2010, USA	YES
Recommended Texts	-	-
Websites	-	-

	Мо	odule Information	
Module Title	Phy	vsics I	Module Delivery
Module Type	В	asic	Theory
Module Code	PH	YS114	
ECTS Credit		6	🗌 Lab
SWL		150	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Hadia K. Judran	College	Electromechanical Eng.
			Dept.
Module Leader	Prof. Assistance	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. in Physics
		Qualification	
Peer Reviewer	-	e-mail	50100@uotechnology.edu.iq
Name			
Scientific	-	e-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims		In this course, students learn the principles of semiconductor materials. The doping of semiconductor, using it in P-N junction and its applications in different types of diodes, transistors, and solar cells.

Module Learning Outcomes	 In this course, students will learn: 1. Study the general classification of engineering materials according to energy bands theory. 2. Realization the principles, properties, and electrical conduction especially in semiconductors. 3. Concept of intrinsic and extrinsic semiconductors. 4. Operation principle and models of p-n junction. 5. Realization the principles of some semiconductors devices as transistor and solar cells.
Inductive Contents	 Electronics physics Magnetic properties. Thermal properties. Logic circuits

	Learning and Teaching Strategies
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting the program outcomes.

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.80	
Total SWL (h/sem) 150				

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	-	-	-	-
	Lab.				

	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 - 4
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Introduction to materials science and engineering
Week 2	Classification of Materials, Metals, Polymers
Week 3	Ceramics, Composites, Advanced Materials
Week 4	Nano-materials, Biomaterials, Smart materials
Week 5	Semiconductors, Concepts of nanostructures, Modern Materials' Needs
Week 6	Atomic Structure and Interatomic Bonding
Week 7	Atomic structure, Atomic bonding in solid
Week 8	Types and applications of materials, Types of metal alloys, Ferrous alloys,
	Nonferrous alloys
Week 9	Types of ceramics, Types of polymers, Types of conductors and semiconductors,
	Types of composite
Week 10	Mid-term Exam
Week 11	Mechanical properties, Elastic deformation
Week 12	Mechanical behavior of materials, Hardness and other mechanical properties.
Week 13	Principles of energy and work, What is the energy?
Week 14	Forms of energy, General equation of work,
Week 15	Renewable energies
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
	Text		
		library	
Required Texts	S. M. Sze, "Physics of Semiconductor Devices,"	-	
	third edition		
Recommended Texts	Thomas L. Floyd, "Electronic Devices,"9 th Ed.,	-	
	P.CM, 2012		
Websites	-	-	

	Me	odule Information	
Module Title	Engineerin	g Mechanics	Module Delivery
Module Type	(Core	Theory
Module Code	ENI	ME115	
ECTS Credit		5	Lab
SWL		125	Tutorial
			Practical
			Seminar 🗌
Module level	1	Semester of Delivery	1
Module Leader	Mohammed H.	College	Electromechanical Eng.
	Jibal		Dept.
Module Leader	Prof. e-mail		eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	
Peer Reviewer	-	E-mail	mohammed.h.jabal
Name			@uotechnology.edu.iq
Scientific -		E-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductiv	re Contents		
Module Aims	In this course, students learn how to apply the		
	basic principles from physics and mechanics		
	to analysis and solve the forces, moment and		
	couples problems.		
	In this course, students learn how to apply the		
	basic principles from physics and mechanics		
	to analysis and solve the forces, moment and		
	couples problems in three-dimensional (3D).		
Module Learning Outcomes	In this course, students will learn:		
	1. Fundamentals of Engineering Mechanics		
	2. How to analyze the forces and moment in		
	mechanisms		
	3. Calculate the Resultant in two		
	dimensional force systems		
	4. Fundamentals of Engineering		
	Mechanics(3D)		

	 5. How to analyze the forces and moment in mechanisms(3D) 6. Calculate the Resultant in three-dimensional force systems 7. Introduction to dynamic
Inductive Contents	In this course, for engineering mechanics students will learn: Introduction to Statics Scalar quantity, vector quantity, standers units Two-dimensional force systems, rectangular components Moment, principle of moment, couple, couple-force system Resultants Three-dimensional force system, component forces for three dimensions Moment in three-dimensional force system, dot product, couple in three- dimensional force system, couple- force system in three-dimensional force system Resultant in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Moment in three-dimensional force system, dot product, couple in three- dimensions Moment in three-dimensional force systems Resultant in three-dimensional force systems Resultant in three-dimensional force systems Resultant in three-dimensional force system, dot product, couple in three- dimensions Moment in three-dimensional force system, dot product, couple in three- dimensional force system, couple- force system in three-dimensional force system Resultant in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Introduction to dynamic Velocity, acceleration & motion laws

	Learning and Teaching Strategies	
Strategies	The branch use a problem based learning which new and student	
	active method. The method help the student getting the program	
	outcomes.	

Student Workload (SWL)				
Structured SWL (h/sem)48Structured SWL (h/w)3.00				
Unstructured SWL (h/sem)77Unstructured SWL (h/w)5.13				
Total SWL (h/sem) 125				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	1	-		LO # 3
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Pla	Delivery Plan (Weekly Syllabus)				
	Materials Covered				
Week 1	Introduction to static				
Week 2	Two-dimensional force systems, rectangular components				
Week 3	Resultants				
Week 4	Moment in three-dimensional force system, dot product, couple in three- dimensional force system				
Week 5	Equilibrium, free body diagram				
Week 6	Types of friction, types friction problem				
Week 7	Composite bodies & figures: approximations				
Week 8	Resultant in three -dimensional force systems.				
Week 9	Mid-term Exam				
Week 10	Introduction to dynamic				
Week 11	Velocity, acceleration & motion laws				

Week 12	Projectile motion
Week 13	Plane curvilinear motion
Week 14	Kinetics of particles, work power, Efficiency, principle of work
Week 15	Impulse & momentum
Week 16	Preparatory week before the final Exam

Delivery Pla	Delivery Plan (weekly lab. Syllabus)			
	Materials Covered			
Week 1	The determination of the resultant of two forces (or more)			
Week 2	The determination of friction coefficient between two surfaces			
Week 3	Centroids and center of gravity			
Week 4	Center of gravity of the composite areas			
Week 5	The investigation of Hook's law using helical spring			
Week 6	The fundamental law of rotation			
Week 7	The law of energy conservation			

Learning and Teaching Resources				
	Available in the			
		library		
Required Texts	Required Texts Engineering Mechanics Statics, J. L. Meriam			
	and L.G. Kraige, John Wiley & Sons, 2013.			
Recommended Texts	Recommended Texts R. C. Hibbeler, "Engineering Mechanics: Statics			
	& Dynamics", 14th ed. Pearson Prentice Hall.			
Websites	-	-		

Module Information					
Module Title	Techni	cal Report	Module Delivery		
Module Type	S	upport	Theory		
Module Code	TE	RE116			
ECTS Credit		3	🔲 Lab		
SWL	75		Tutorial		
			Practical		
			Seminar		
Module level	1	Semester of Delivery	1		
Module Leader	er Jalal M. Jalil College		Electromechanical Eng.		
			Dept.		
Module Leader Prof.		e-mail	eme@uotechnology.edu.iq		

Academic Title			
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	
Peer Reviewer	-	e-mail	50003@uotechnology.edu.iq
Name			
Scientific	-	e-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module - Semester -				
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductiv	Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	Develop the ability of the students to write a			
	technical report with different kinds (formal,			
	informal, others)			
Module Learning Outcomes	In this course, students will learn:			
	1. Performing Technical Studies			
	2. Writing Strategy			
	3. Document Options			
	4. Criteria for Good Technical Writing			
	5. Writing Style			
	6. Using Illustrations			
	7. Formal Reports			
Inductive Contents	Formal report			
	Informal Report			
	• Other writing			

Learning and Teaching Strategies				
Strategies	The branch use a problem based learning which new and student active			
	method. The method help the student getting the program outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.0					
Unstructured SWL (h/sem)42Unstructured SWL (h/w)2.8					
Total SWL (h/sem) 75					

Module Evaluation

		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Technical Writing
Week 2	Reasons for Writing
Week 3	Performing Technical Studies
Week 4	Writing Strategy
Week 5	Document Options
Week 6	Criteria for Good Technical Writing
Week 7	Writing Style
Week 8	Using Illustrations
Week 9	Formal Reports: The Outline and Introduction
Week 10	Formal Reports: Writing the Body
Week 11	Mid-term Exam
Week 12	Formal Reports: Closure
Week 13	Informal Reports
Week 14	Review and Editing
Week 15	References
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources				
	Text				
		library			
Required Texts	ENGINEERS' GUIDE TO TECHNICAL	pdf			
	WRITING, Kenneth G. Budinski				
Recommended Texts	-	-			
Websites	-	-			

Module	7
TITOGRAF	

	Μ	odule Information	
Module Title	S	bport	Module Delivery
Module Type	Su	ipport	Theory
Module Code	SPO	OR117	
ECTS Credit		2	🗌 Lab
SWL		50	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Muaid Waleed	College	Electromechanical Eng.
			Dept.
Module Leader	Asst. Prof.	e-mail	10755@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	MsC.
		Qualification	
Peer Reviewer	-	E-mail	10755@uotechnology.edu.iq
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Modules					
Prerequisite Module	-	Semester	-		
Co-requisite Module	-	Semester	-		

Module Aims, Learning Outcomes and Inductive Contents					
Module Aims	Develop the ability of the students to				
	understand the main sport activities				
Module Learning Outcomes	In this course, students will learn:				
	1- Football				
	2- Basketball				
Inductive Contents	Football				
	• Basketball				

Learning and Teaching	g Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.0					
Unstructured SWL (h/sem) 17		Unstructured SWL (h/w)	1.13		
Total SWL (h/sem) 50 -					

Module Evaluation					
		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Sports - concept, benefits and types
Week 2	Fitness - the concept and elements of fitness
Week 3	Football - concept + history
Week 4	Football - basic soccer skills
Week 5	Football Law - Article 1, 2
Week 6	Football Law - Articles 3, 4, 5
Week 7	Basketball - concept + history
Week 8	Basketball - basic basketball skills
Week 9	Anatomy
Week 10	The skeleton
Week 11	Circulatory system
Week 12	Muscular system - concept + muscle injuries
Week 13	Scouting - concept + stages + scouting law
Week 14	Biorhythm - concept + benefits + historical overview
Week 15	Biorhythm cycles
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources				
	Text	Available	in	the	
		library			
Required Texts	Volleyball (history - skills - plans - game	pdf			
	management - and training)				
	Series/basketball basics				
	Sports training and future prospects				
Recommended Texts	-	-			
Websites	-	-			

Second Semester

		Module Information	n
Module Title	Computer Science I		Module Delivery
Module Type	Su	ipport	Theory
Module Code	CO	SC121	
ECTS Credit		3	Lab
SWL		75	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Ameer Abed Gaddoa	College	Electromechanical Eng. Dept.
Module Leader Academic Title	Prof. assistance	e-mail	eme@uotechnology.edu.iq
Module Tutor	-	Module Leader's Qualification	PhD. in Mech. Eng.
Peer Reviewer Name	-	E-mail	ameer.A.Jaddoa@uotechnology.edu.iq
Scientific	Scientific - E-mail		-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	Prerequisite Module -		

Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Induc	ctive Contents		
Module Aims	In this course, the student will learn how to use		
	software in his work (Visual Basic Language)		
Module Learning Outcomes	In this course, - Computer Science students will learn: 1. Computer Hardware (Microprocessor, Memory, Input and Output Devices). Programming Languages, Operating Systems / Types of Files and Directories 2. Numbers representation (Binary, Decimal, Octal, Hexadecimal) 3. Logic Gates 4. Algorithm and Flow Chart 5. Programming in Visual Basic: a- Introduction to visual basic b- Elements of the Integrated Development Environment (IDE) c- Toolbox (Properties and its Events) d- Built the project by using Toolbox and Properties Window e- Built the project by using Code Module f- Input box and Messages box g- Visual Basic Operators h- Conditional Statements (IF, Select Case) 6. One Dimensional Array		
	7. Two Dimensional Array Subroutine		
Inductive Contents	In this course for Computer Science, the topics are: Logic Gates Numbers representation (Binary, Decimal, Octal, Hexadecimal) Algorithm & Flow Chart Programming in Visual Basic		

Learning and Teaching Strategies			
Strategies	The branch use a problem based learning which new and student active		

method. The method help the student getting the program outcomes.

Student Workload (SWL)				
Structured SWL (h/sem)48Structured SWL (h/w)3.0				
Unstructured SWL (h/sem)	27	Unstructured SWL (h/w)	1.8	
Total SWL (h/sem)	75	-	-	

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 4
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Computer Hardware Concepts
Week 2	Computer Software Concepts
Week 3	Application Software
Week 4	System Software
Week 5	Machine Language
Week 6	High Level Languages
Week 7	Assembly Language
Week 8	Programming Language
Week 9	Application Software
Week 10	Mid-term Exam
Week 11	Compiler and Interpreter
Week 12	Files & Folders
Week 13	Binary Decimal Octal and Hexadecimal number system
Week 14	Logic gates
Week 15	Algorithms & Flow Charts
Week 16	Preparatory week before the final Exam

Delivery Plan (weekly lab. Syllabus)		
	Materials Covered	
Week 1	Windows 7 / operating systems	
Week 2	Microsoft Word2007	
Week 3	Microsoft Excel 2007	
Week 4	Microsoft Power Point 2007	
Week 5	Visual basic programming	
Week 6	Assignment Statement	
Week 7	Declaration Statement	

Learning and Teaching Resources				
	Text			
		library		
Required Texts	Basic Principles of Learning Visual Basic	-		
	Language 2016			
Recommended Texts	Basic Principles of Learning Visual Basic	-		
	Language C++ 2014			
Websites	-	-		

	Ν	Iodule Information		
Module Title	Mathematics II		Module Delivery	
Module Type	E	Basic	Theory	
Module Code	MA	TH122		
ECTS Credit		6	🗌 Lab	
SWL		150	🔲 Tutorial	
			Practical	
			Seminar Seminar	
Module level	1	Semester of Delivery	1	
Module Leader	Naser Fadel	College	Electromechanical Eng.	
			Dept.	
Module Leader	Lecture	E-mail	eme@uotechnology.edu.iq	
Academic Title				
Module Tutor	-	Module Leader's	Phd. Mech. Eng.	
		Qualification		
Peer Reviewer	-	E-mail	Naser. F.	
Name			husaan@uotechnology.edu.iq	
Scientific	-	E-mail	-	

Committee Approval Date			
-	-	Version Number	-

	Relation with other Modu	les	
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	The students will learn the second part of the basic math		
Module Learning Outcomes	 In this course, for students will learn Differentiation (Derivative Definition, Techniques of Derivative, Applications) Differentiation (Parametric Equations, Implicit Differentiation) Integration (Definite Integrals, Properties, Relation Between Indefinite & definite Integrals) Integration (Partial Fractions For 2nd Equation Degree in Denominator) Integration of (Irrational Functions, Rational Functions) Applications of Definite Integral(Area, Area Under the Curve, Area between Curve and y-axis, Area Between Two Curves) Differential Equations D.E. 1st degree equation: (5- Exact, 6- Bernoulli's Equations) 		
Inductive Contents	 In this course, students will learn: Differentiation (Derivative Definition, Techniques of Derivative, Applications) Differentiation (Derivative of Trigonometric Functions, Derivative of Inverse Trigonometric Functions, Chain Rule,) Differentiation (Parametric Equations, Implicit Differentiation) Differentiation (Derivative of Some Functions, Derivative of Universe of Some Functions, Derivative of Inverse Hyperbolic Functions) Integration (Indefinite Integrals & Substitution Rule) Integration (Definite Integrals, Properties, Relation Between Indefinite & definite Integrals) 		

	Learning and Teaching Strategies		
Strategies	The branch use a problem based learning which new and student active		
	method. The method help the student getting the program outcomes.		

Student Workload (SWL)			
Structured SWL (h/sem)	63	Structured SWL (h/w)	4.0
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.8
Total SWL (h/sem)	150	-	-

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2, 3
Assessment	Assignments	1	10%	7	LO # 4, 5, 6
	Projects /	-	-	-	-
	Lab.				
	Report	_	10%	-	-

Summative	Midterm	1.5 hr	20%	9	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment			100%	-	-

Delivery Pl	an (Weekly Syllabus)	
	Materials Covered	
Week 1	Differentiation	
	Derivative by definition	
	Techniques of differentiation	
	Applications	
Week 2	Derivative of trigonometric functions	
	Derivative of inverse trigonometric functions	
	Chain rule	
	Parametric equation	
Week 3	Implicit differentiation	
	Derivative of some functions	
	Derivative of hyperbolic functions	
	Derivative of inverse of hyperbolic functions	
Week 4	Integration : 2-1 Indefinite of integral	
	Definite of integral	
	Properties	
Week 5	Relation between indefinite& definite integral	
	Forms of integration	
	Substitution	
	By parts	
Week 6	By tabulate	
	By partial fractions	
	For 2 nd equation degree in denominator	
	Product between trigonometric functions	
W 1. 7	Product between hyperbolic functions	
Week 7	Simple square root Trigonometric substitutions	
	Hyperbolic substitutions	
Week 8	Integration of irrational functions	
Week o	Integration of rational function	
	Applications of definite integral	
Week 9	Mid-term Exam	
Week 10	Areas	
	Area under the curve	
	Area between curve and y- axis : 2-4-3 area between two curves	
	Area in polar co-ordinates	
Week 11	Volumes by slicing	
	Disks around x-axis	

Week 12	Disks around y-axis
	Volume in polar co-ordinate
Week 13	1 st of D.E
	Introduction
Week 14	Formation of differential equation
	Solution of differential equation
Week 15	Method-1-by direct integration
	Method -2- by separating the variables
	Method -3- homogeneous equation
	Method -4- linear equation, use of integrating factor
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
-	- Text			
Required Texts	Thomas Calculus, George B. Thomas et al, 12 th , edition, 2010, USA.	YES		
Recommended Texts	-	-		
Websites	-	-		

	Module Information				
Module Title	Phy	sics II	Module Delivery		
Module Type	В	Basic	Theory		
Module Code	PH	YS123			
ECTS Credit		6	🗌 Lab		
SWL		150	Tutorial		
			Practical		
			Seminar		
Module level	1	Semester of Delivery	1		
Module Leader	Amjed Al Ezzi	College	Electromechanical Eng.		
			Dept.		
Module Leader	Prof. assistance	e-mail	eme@uotechnology.edu.iq		
Academic Title					
Module Tutor	-	Module Leader's	PhD. Mech. Eng.		
		Qualification			
Peer Reviewer	-	E-mail	50093@uotechnology.edu.iq		
Name					
Scientific	-	E-mail	-		
Committee					
Approval Date					

	Version Number	-
--	----------------	---

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcom	es and Inductive Contents		
Module Aims	In this course, students learn the basic of material science and engineering. Also students learn the principles of mechanical tests of metallic materials.		
Module Learning Outcomes	 In this course, students will learn: 1) Concept of materials science and materials engineering. 2) Study the general classification of engineering materials, in addition to concept and types of advanced materials. 3) Analyze the atomic structure and types of atomic bonding in solid materials. 4) Realization the principles, properties, synthesize techniques of nanostructures, and advance applications of these materials. 5) Study the mechanical properties of metallic materials where this includes mechanical tests types and (elastic, plastic) behaviors. 		
Inductive Contents	 Introduction to materials science and engineering. Atomic Structure and Interatomic Bonding Types and applications of materials Mechanical properties. 		

Learning and Teaching	Strategies
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)63Structured SWL (h/w)4.0			
Unstructured SWL (h/sem)87Unstructured SWL (h/w)5.8		5.8	
Total SWL (h/sem)	150	-	-

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1
Assessment	Assignments	1	10%	7	LO # 2
	Projects /	-	-		
	Lab.				
	Report		10%		
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 3
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment				

Delivery Pla	an (Weekly Syllabus)	
	Materials Covered	
Week 1	Introduction	
Week 2	Types of semiconductor materials	
Week 3	Types of semiconductor materials	
Week 4	Current density	
Week 5	Intrinsic semiconductor	
Week 6	Examples	
Week 7	The Diode	
Week 8	Symbol of Diode in Electronic Circuits	
Week 9	Reverse Bias & Current	
Week 10	Mid-term Exam	
Week 11	General Diode Equation	
Week 12	Models of Diode	
Week 13	Examples	
Week 14	DC or Static Resistance	
Week 15	Types of Diodes	
Week 16	Preparatory week before the final Exam	

Learning and Teaching Resources			
	Text		
		library	
Required Texts	William D. Callister, "Materials science and	-	
	engineering (An introduction)," 8th edition.		
Recommended Texts	Bryan Harris, "Engineering composite	-	
	materials,"The Institute of Materials, London,		

	1999	
Websites	-	-

	Module Information					
Module Title	Fundamentals of Elec	Module Delivery				
	•	DC)				
Module Type	(Core	Theory			
Module Code	FU	FUEE124				
ECTS Credit		4	📕 Lab			
SWL		100	🔲 Tutorial			
			Practical			
			Seminar Seminar			
Module level	1 Semester of Delivery		1			
Module Leader	Hashmia S.	College	Electromechanical Eng.			
	Dakheel		Dept.			
Module Leader	r Lecturer e-mail		eme@uotechnology.edu.iq			
Academic Title						
Module Tutor	-	Module Leader's	MSc. Elect. Eng.			
		Qualification				
Peer Reviewer	-	E-mail	-			
Name	Name					
Scientific	-	E-mail	-			
Committee						
Approval Date						
	-	Version Number	-			

Relation with other Modules			
Prerequisite Module - Semester -			
Co-requisite Module	-	Semester	-

Module Aims, Learning	g Outcomes and Inductive Contents
Module Aims	In this course, students learn some details of Fundamental of AC and DC circuits and their analysis by using different methods, Firstly, they are taken the atomic structure to understand the concept of current and voltage, then they are given the Kirchhoff's current and voltage laws and how they can employ them to analysis of the AC and DC circuits. Besides, the analysis methods are presented to learn the students the analysis of the AC and DC circuits. In addition, the analysis the AC and DC circuits by network theorems are given.

Module Learning	In this course, the students will learn:
Outcomes	1) Analysis of DC circuits by using Kirchhoff's current and voltage
	laws
	2) Analysis of DC circuits by using analysis methods
	3) Analysis of DC circuits by using network theorem
	4) Fundamental of AC circuits
	5) Analysis of AC circuits by using Kirchhoff's current and voltage
	laws
	6) Analysis of AC circuits by using analysis methods
	7) Analysis of AC circuits by using network theorem
Inductive Contents	In this course, these topics will be presented to the students during
	weekly lecture
	• DC electrical circuit
	 Analysis methods of DC circuits
	Network theorems of DC circuit
	• Sinusoidal alternating wave
	• Complex number
	AC circuits
	• Methods of AC circuits analysis
	Network theorems of AC circuits

Learning and Teach	ning Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)				
Structured SWL (h/sem)	78	Structured SWL (h/w)	5.0	
Unstructured SWL (h/sem)	22	Unstructured SWL (h/w)	1.46	
Total SWL (h/sem)	100		-	

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	1	-	14	LO # 5
	Lab.				
	Report	_	10%	-	_

Summative	Midterm	1.5 hr	20%	10	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

	Delivery Plan (Weekly Syllabus)	
	Materials Covered	
Week 1	Basic of Electrical	
Week 2	DC electrical circuit	
Week 3	Analysis Method	
Week 4	Network Theorems	
Week 5	Sinusoidal Alternating wave	
Week 6	Complex number	
Week 7	AC circuits	
Week 8	Power in AC circuits	
Week 9	Method of A.C. Analysis	
Week 10	Mid-term Exam	
Week 11	Delta-Star conversions	
Week 12	Network Theorems for A.C. Circuits	
Week 13	Norton's Theorem	
Week 14	Magnetic Circuits	
Week 15	Magnetizing force	
Week 16	Preparatory week before the final Exam	

	Delivery Plan (weekly lab. Syllabus)			
	Materials Covered			
Week 1	Ohm's Law			
Week 2	Kirchhoff's Law			
Week 3	Delta/star+ transformation			
Week 4	The venin's theorem			
Week 5	Super position theorem			
Week 6	Induction and capacitive Reactance			
Week 7	Oscilloscope			

Learning and Teaching Resources

	Text	Available in the
		library
Required Texts	Robert L. Boylestad, Introductory Circuit	-
	Analysis, Charles E. Merrill Publishing	
	Company, 1977	
Recommended Texts	U. A. Bakshi and V. U. Bakshi, Basic Electrical	-
	Engineering, Technical Publications Pune, 2008	
Websites	-	-

		Module Information	
Module Title	Fundamentals of AutoCAD tools		Module Delivery
	Drawing		
Module Type	Sı	ıpport	Theory
Module Code	FA	TD125	
ECTS Credit		4	Lab
SWL		100	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Akram	College	Electromechanical Eng. Dept.
	Hamzah Abed		
Module Leader	Lecturer	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. Mech. Eng.
		Qualification	
Peer Reviewer	-	E-mail	akram.h.abed@uotechnology.edu.iq
Name			
Scientific	_	E-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module	Aims, Learning	Outcomes and Inductive Contents
Module	Aims	Students learn how to create, edit, store, and print engineering
		drawings.
Module	Learning	1-Tour of AutoCAD.

Outcomes	2- User Interface.	
	3- Entering commands.	
	4- Basic Objects.	
	5- Object selection.	
	6- Entering coordinates.	
	7- Object snap.	
	8- Construction Aids.	
	9-Solid and curved objects.	
	10- Adding and Altering objects.	
	11- Moving and Duplicating Objects.	
Inductive Contents	1- Tour of AutoCAD.	
	2- User Interface.	
	3- Entering commands.	
	4- Basic Objects.	
	5- Object selection.	
	6- Entering coordinates.	
	7- Object snap.	
	8- Construction Aids.	
	9-Solid and curved objects.	
	10- Adding and Altering objects.	
	11- Moving and Duplicating Objects.	
	12- Modifying and Maneuvering.	

Learning and Teachin	g Strategies
Strategies	The branch use a problem based learning which new and student active
method. The method help the student getting the program outcomes.	

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.0				
Unstructured SWL (h/sem)37Unstructured SWL (h/w)2.46				
Total SWL (h/sem)	100	-	-	

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes		10%		
Assessment	Assignments		10%		
	Projects /	1.5/2	-	7, 10	LO # 1-7
	Lab.				
	Report		10%		
Summative	Midterm	1.5 hr	20%	12	All

Assessment	Exam				
	Final Exam	3 hr	50%	15	All
Total assessment		100%	-	-	

Delivery Plan (weekly lab. Syllabus)		
	Materials Covered	
Week 1	Tour of AutoCAD.	
Week 2	User Interface.	
Week 3	Entering commands.	
Week 4	Basic Objects.	
Week 5	Object selection.	
Week 6	Entering coordinates.	
Week 7	Object snap.	
Week 8	Construction Aids.	
Week 9	Solid and curved objects.	
Week 10	Mid-term Exam	
Week 11	Moving and Duplicating Objects.	
Week 12	Modifying and Maneuvering.	
Week 13	Orthographic projection.	
Week 14	Isometric Projection.	
Week 15	Final Exam	
Week 16	-	

Learning and Teaching Resources			
	Text	Available in the library	
Required Texts	Computer Aided Drawing. Assistant professor Ali Hussein Ali Saeed, UOT, 2011	-	
Recommended Texts	Engineering Drawing. Assistant professor Abed Alrassol AL-Khfaf, UOT, 1990	-	
Websites	-	-	

	Module Information	
Module TitleEngineering MechanicsModule Delivery		
Module Type	Core	Theory

Module Code	EN	ME126	
ECTS Credit		3	Lab
SWL		75	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Mohammed H.	College	Electromechanical Eng.
	Jibal		Dept.
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	_	Module Leader's	PhD. in Mech. Eng.
		Qualification	C
Peer Reviewer	-	e-mail	mohammed.h.jabal
Name			@uotechnology.edu.iq
Scientific	-	e-mail	-
Committee			
Approval Date			
	-	Version Number	_

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	In this course, students learn how to apply the	
	basic principles from physics and mechanics	
	to analysis and solve the forces, moment and	
	couples problems.	
	In this course, students learn how to apply the	
	basic principles from physics and mechanics	
	to analysis and solve the forces, moment and	
	couples problems in three-dimensional (3D).	
Module Learning Outcomes	In this course, students will learn:	
	8. Fundamentals of Engineering Mechanics	
	9. How to analyze the forces and moment in mechanisms	
	10. Calculate the Resultant in two dimensional force systems	
	11. Fundamentals of Engineering Mechanics(3D)	
	12. How to analyze the forces and moment in	
	mechanisms(3D)	
	13. Calculate the Resultant in three-	

	dimensional force systems
	14. Introduction to dynamic
Inductive Contents	In this course, for engineering mechanics students will learn: Introduction to Statics Scalar quantity, vector quantity, standers units Two-dimensional force systems, rectangular components Moment, principle of moment, couple, couple-force system Resultants Three-dimensional force system, component forces for three dimensions Moment in three-dimensional force system, dot product, couple in three- dimensional force system, couple- force system in three-dimensional force system Resultant in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Three-dimensional force system, component forces for three dimensions Moment in three-dimensional force systems Equilibrium, free body diagram Types of product, couple in three- dimensions Moment in three-dimensional force system, dot product, couple in three- dimensions Moment in three-dimensional force system, dot product, couple in three- dimensional force system Resultant in three-dimensional force system Resultant in three-dimensional force systems Equilibrium, free body diagram Resultant in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Introduction to dynamic Velocity, acceleration & motion laws

Learning and Teaching Strategies

Strategies	The branch use a problem based learning which new and student
	active method. The method help the student getting the program
	outcomes.

Student Workload (SWL)							
Structured SWL (h/sem)48Structured SWL (h/w)3.0							
Unstructured SWL (h/sem)	27	Unstructured SWL (h/w)	1.8				
Total SWL (h/sem)	Total SWL (h/sem) 75						

Module Evaluation							
		Time/No.	Weight	Week Due	Relevant Learning		
			(Marks)		Outcome		
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3		
Assessment	Assignments	1	10%	7	LO # 4 , 5		
	Projects /	1	-		LO # 3		
	Lab.						
	Report	-	10%	-	-		
Summative	Midterm	1.5 hr	20%	9	LO # 1 - 5		
Assessment	Exam						
	Final Exam	3 hr	50%	17	All		
	Total assessment		100%	-	_		

	Delivery Plan (Weekly Syllabus)
	Introduction to dynamic.
Week 1	Kinematics of particles, rectilinear motion.
Week 2	Velocity, acceleration & motion laws.
Week 3	Plane curvilinear motion (rectangular coordinate (x-y)).
Week 4	Projectile motion.
Week 5	Plane curvilinear motion (normal & tangential coordinates (n-1)).
Week 6	Plane curvilinear motion (polar coordinates $(r - \Theta)$).
Week 7	Kinetics 'of particles, Newton s second law.
Week 8	Rectilinear motion.
Week 9	Curvilinear motion.
Week 10	Kinetics of particles, work power, Efficiency, principle of work & kinetic
	energy.
Week 11	Impulse & momentum.
Week 12	Introduction to dynamic.
Week 13	Kinematics of particles, rectilinear motion.

Week 14	Velocity, acceleration & motion laws.
Week 15	Plane curvilinear motion (rectangular coordinate (x-y)).
Week 16	Preparatory week before the final Exam

	Delivery Plan (weekly lab. Syllabus)					
	Materials Covered					
Week 1	The determination of the resultant of two forces (or more)					
Week 2	The determination of friction coefficient between two surfaces					
Week 3	Centroids and center of gravity					
Week 4	Center of gravity of the composite areas					
Week 5	The investigation of Hook's law using helical spring					
Week 6	The fundamental law of rotation					
Week 7	The law of energy conservation					

Learning and Teaching Resources					
	Available in the				
Required Texts	-				
	and L.G. Kraige, John Wiley & Sons, 2013.				
Recommended Texts	R. C. Hibbeler, "Engineering Mechanics: Statics	-			
	& Dynamics", 14th ed. Pearson Prentice Hall.				
Websites	-	-			

University of Technology

Electromechanical Engineering department

Energy and Renewable Energy Engineering Branch

2024 - 2025

Second Cycle,

Bachelor's Degree (B.Sc.) - Energy and Renewable Energy Engineering Program

<u> Appendix 2 Program Catalogue</u>

Table of Contents

- 1- Mission and Vision Statement
- 2- Program Specification
- 3- Program Objectives
- 4- Student Learning Outcomes
- 5- Academic Staff
- 6- Credit, Grading and GPA
- 7- Modules
- 8- Contact

1. Mission and Vision Statement

Vision Statement

Aiming to build an engineering establishment in Energy and Renewable Energy field to be outstanding one among the top international university.

Mission Statement

- 1- Prepare our students for successful careers in the energy and renewable energies profession,
- 2- Conduct high quality and innovative research, and
- 3- Serve the community and industry providing educational and research resources.

For future plans, the branch intends to cover all required courses in energy sectors in Iraq, including gas, steam, renewable energies (solar, wind and others, added recently), nuclear, water power plants. Through the communications with Ministry of Electricity (symposiums, industrial advisory board meeting), the branch developed his courses according to the needs of the Ministry which is responsible for all power plants in Iraq.

2. Program Specification

Program Code	BSc-EREE	ECTS	240
Duration	4 Year, 8 Semesters	Method of Attendance	Full Time

Subject Areas Requirements

The Energy and Renewable Energy Engineering program produces graduates who are prepared to enter the practice of energy and renewable energies engineering. For two paths, there are three major components of the program: (1) foundation in the mathematical and physical sciences, (2) engineering topics in both mechanical and electric systems with design applications, and (3) general education in the humanities, English course and ethics.

Mathematics and Physical Sciences

The engineering science fundamentals and engineering design skills are built upon the basic mathematics and physical sciences. The mathematics work begins with a three levels course (six courses) sequence on differential and integral calculus. The first two courses include topics in limits, derivatives, and the integrals of functions of one variable, work on partial derivatives and multiple integrals is presented. Vector analysis and three-dimensional analytical geometry, solution of the first and second order linear differential equations with numerous applications, Laplace transforms, power series solutions, numerical methods, linear systems and numerical analysis with engineering applications in numerical differentiation and integration. With this foundation in mathematics, our students have necessary tools for applications in analysis and design.

Physics (two courses) in the first level includes materials science, classification of materials, atomic structure and the type of bonding forces, types of materials and their applications and the mechanical material properties.

It is noted that the number of hours for Math and Basic Science is 30 hours and it's satisfies ICAEE requirement.

Engineering Topics

The aim of the program is to graduate students capable to work as mechanical and electrical engineer in energy and renewable energies field. The engineering topics are divided into four parts; preliminary joint courses, mechanical courses, electrical courses and final joint courses.

Preliminary joint courses:

- Workshop Training; Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining (lathe, milling, drilling), forging, denting, filings, forging, welding, and casting.
- Computer Courses; Computer Science (Visual BASIC programs), Advanced Programming (C++), Application of Advance Computer (Microprocessors and MATLAB languages).
- Industrial Engineering, determine the most effective ways for an organization to use the basic factors of production.
- Engineering and Machine Drawing is to teach students manual drafting and

dimensioning of views, explains the principles of orthographic views, multi view projection and sectional view drawing.

Engineering courses are divided into two parts;

Mechanical Courses,

- Engineering Mechanics. This unit of study aims to provide theoretical knowledge and principles of Statics and Dynamics.
- Strength of Material and Vibration. In this course, students will learn; the behavior of solid bodies under loads and deflections, study the simple bending theory for beams and the simple torsion theory for shafts circular and non-circular, deflection of beams, complex stresses, compounds beam and discussion the principles of free & forced vibrations
- Control System, illustration and discussion the Main Theoretical Principles of control systems and understanding of using different system Damping.
- Thermodynamics, Fundamental thermodynamic concepts including system, state, state postulate, equilibrium, process and cycle, Heat, work, 1st Law of Thermodynamics, Properties of a substance, Energy balances for idealized closed systems, Energy and mass balances for idealized control volumes, 2nd Law of Thermodynamics, Carnot cycles, thermal efficiencies, Entropy, isentropic processes, isentropic efficiencies, idealized power cycles (Otto, Diesel and Rankine Cycles).
- Fluid Mechanics. This course provides a working knowledge of Fluid Mechanics and Illustration and discussion the principles of Principle of fluid motional flow classification Bernoulli's equation as well as applications of Bernoulli's equation and anther subject in Fluid Mechanics.
- Heat Transfer; teach theoretical basics of the conduction, convection and radiation heat transfer Coincided with a laboratory experiment.
- Fluid Machinery, Illustration and discussion the principles of operation for fluid machinery and their types.
- Power Plants, studying the thermal analysis of the steam or gas turbine plants.
- Combustion and Air Pollution, to explain concept of various forms combustion process & air pollution problem.
- Nuclear Power Plants, illustration the principles of Nuclear Power Plant operation and their types, study main four elements of nuclear core, their kinds, and desirable features, study thermal design of the PWR and BWR and study thermodynamic, control of the Nuclear Power Plant.
- Renewable Energy Sources, explain concept of various forms of renewable energy (solar, wind, geothermal, bio and other kinds of renewable energies).
- Renewable Energy System, concentrates on solar or wind systems.

Electrical Courses,

• Fundamental of Electric Engineering (illustration and discussion the fundamental f electric engineering and definition, proceeding to the student the DC Electrical Circuits, series, parallel, series-parallel and identify the equations voltages & current for circuits above).

- Electric and Electronic Circuits, in electrical engineering, we are often interested in communicating or transferring energy from one point to another. To do this requires an interconnection of electrical devices. Such interconnection is referred to as an electric circuit.
- Electrical Machines, Illustration and discussion the principles of DC and AC machines, description of the machine, as well as its operation in electrical machines.
- Power systems, Giving Knowledge about the generation, transmission, and distribution type systems.
- Power system analysis, illustration and discussion the principles of power system analysis.
- Power Electronics and Electrical Drives, theoretical and practical experiences in the field of power electronics and electrical drives such as AC to DC converters (Rectifiers), DC to AC converters (invertors), DC to DC converters (DC choppers), AC to AC converters (AC voltage regulator and cycloconverter), speed control of DC motors, and speed control of AC motors (inductions and synchronous motors).

Final Joint Courses,

- Electromechanical Equipment, this course specification provides the main features of the Electromechanical Systems and Devices.
- Power Plant Operation and Maintenance, illustration and discussion the principles of Power plant operation and maintenance.
- Energy Efficiency concentrates on energy efficiency for mechanical and electrical applications.

Others Including General Education

The third major area of the curriculum is the general education component. The University of Technology has a mandated General Education Requirements for all degrees. To satisfy the General Education Requirements the Energy and Renewable Energies Engineering Program set required courses in the general education component as follows:

- English Language (two levels), this course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.
- Human Rights (first level), Freedom and Democracy (first level), the course covers the concept of human rights and development, definition, classes, properties, and the most important human rights conventions and declarations and international conventions on human rights and human rights in religions and the role of non-governmental organizations in this field and other human rights issues. The substance of freedom and democracy include the concept of freedom and kinds, democracy and the types and components, individual liberty and freedom forced to reconcile the sovereignty, freedom, democracy during the Greeks time, lobbyists, the most important theories on the nature of election, the

rights of minorities in democratic governance and other topics that make the student familiar with the issues.

- Crimes of the Baath Regime in iraq (second level), this course making this generation aware of the crimes committed by the Baathist regime, and extent of human rights violations publicly
- Ethics in Engineering (fourth level), concentrates on professional Ethics.
- Sport (second level), concentrates on different sport activities.

Major Design Experience

In the last year, students take Senior Capstone Design, which is the final major design course. In this course, students learn how to apply the basic engineering science and design principles to formulate a design problem, and then follow recommended process to complete the design project. Students are required to demonstrate their ability to use the knowledge of mechanical and electrical courses for the whole undergraduate curriculum. Some professional components if not taught in other courses, such as life- long learning to keep knowledge up to date, are covered in this course. For the capstone design experience. The students are typically in teams of three people. At the end of the year, all the design teams present their capstone design projects. All the EREE faculty members, representatives from industry and EREE Industrial Advisory Council members are invited at the presentation and they also serve as evaluators for the capstone design projects. The evaluation includes the project evaluation in three parts (overall technical content, presentation, and response to questions), assessment of the related Graduate Outcomes and comment.

3. Program Goals (objectives)

- 1- Enter the energy and renewable energies engineering profession as practicing engineers and consultants with prominent companies and organizations in diverse areas that related to energy and renewable energies engineering.
- 2- Pursue graduate education and research at major research universities in Energy and Renewable Energies engineering, and related fields
- 3- Advance in their chosen fields to supervisory and management positions
- 4- Engage in continued learning through professional development
- 5- Participate in and contribute to professional societies and community services

4. Student (Graduate) Learning Outcomes

Students from the Energy and Renewable Energies program will attain (by the time of graduation):

1. An ability to identify, formulate, and solve engineering in energy and renewable energies engineering problems by applying principles of engineering, science, and mathematics.

- 2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline
- 3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 4. An ability to communicate effectively with a range of audiences
- 5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 6. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge
- 7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment

Faculty Name	Highest Degree Earned- Field and Year	Rank	Email	
Jalal Mohammed Jalil	PhD. in Mech. Eng. (1989)	Prof.	50003@uotechnology.edu.iq	
Ameer Abed Jaddoa	PhD. in Mech. Eng. (2016)	Prof. Assistance	Ameer.A.Jaddoa@uotechnology.edu.iq	
Muhannad Z. Khalifa	PhD. in Mech. Eng. (2003)	Prof.	Muhannad Z. Khalifa @uotechnology.edu.iq	
Khalid Faisal Sultan	PhD. in Mech. Eng. (1998)	Prof.	Khalid Faisal Sultan @uotechnology.edu.iq	
Ibtisam A. Hassan	PhD. in Mech. Eng. (1998)	Prof.	Ibtisam A. Hassan @uotechnology.edu.iq	
Hussein M. Salih	PhD. in Mech. Eng. (2006)	Prof.	Hussein M. Salih @uotechnology.edu.iq	
Aseel J. Mohammed	PhD. in Mech. Eng. (2006)	Prof. Assistance	Aseel J. Mohammed @uotechnology.edu.iq	
Sahar R. Al- Sakini	PhD. in Elect. Eng. (2003)	Prof. Assistance	Sahar R. Al- Sakini @uotechnology.edu.iq	
Mohammed H. Jibal	PhD. in Mech. Eng. (2016)	Prof.	Mohammed H. Jibal @uotechnology.edu.iq	
Hayder Q. Alwan	PhD. in Mech. Eng. (2017)	Prof. Assistance	Hayder Q. Alwan @uotechnology.edu.iq	
Hadia K. Judran	PhD. in Physics (2009)	Prof. Assistance	Hadia K. Judran @uotechnology.edu.iq	

5. Academic Staff (Faculty)

Zainab B. Abdulla	MSc. Elect. Eng. (2001)	Prof. Assistance	Zainab B. Abdulla @uotechnology.edu.iq
Hussain G. Jabir	MSc. Elect. Eng. (2004)	Lecturer Assistance	Hussain G. Jabir @uotechnology.edu.iq
Hashmia S. Dakheel	MSc. Elect. Eng. (2000)	Prof. Assistance	Hashmia S. Dakheel @uotechnology.edu.iq
Raed A. Jessam	PhD. Mech. Eng. (2018)	Prof. Assistance	Raed A. Jessam @uotechnology.edu.iq
Adel Hannon Ayaal	PhD. Mech. Eng. (2017)	Prof	Adel Hannon Ayaal @uotechnology.edu.iq
Sammar J. Ismail	PhD. in Elect. Eng. (2017)	Prof. Assistance	Hussain S. Abid @uotechnology.edu.iq
Hussain S. Abid	PhD. in Mech. Eng. (2017)	Prof. Assistance	Hussain S. Abid @uotechnology.edu.iq
Mahmoud M. Mahdi	PhD. in Mech. Eng. (2005)	Prof. Assistance	Mahmoud M. Mahdi @uotechnology.edu.iq
Sundus S. Jumaah	PhD. in Mech. Eng. (2017)	Prof. Assistance	Sundus S. Jumaah @uotechnology.edu.iq
Wafaa Abood Makee	MSc. Mech. Eng. (2002)	Lecturer Assistance	Wafaa Abood Makee @uotechnology.edu.iq
Waleed Yousif Shahb	MSc. Mech. Eng. (2017)	Lecturer Assistance	Waleed Yousif Shahb @uotechnology.edu.iq
Ayad K. Khlief	PhD. Mech. Eng. (2019)	Prof. Assistance	Ayad K. Khlief @uotechnology.edu.iq
Ali Abdulwahab Ismaeel	PhD. Mech. Eng. (2019)	Prof. Assistance	Ali Abdulwahab Ismaeel@uotechnology.edu.iq
Ahmed Kamil Hasan AL-ALI	PhD. Elect. Eng. (2020)	Prof. Assistance	Ahmed Kamil Hasan AL-ALI @uotechnology.edu.iq
Akram Hamzah Abed	PhD. Mech. Eng. (2020)	Prof. Assistance	Akram Hamzah Abed @uotechnology.edu.iq
Luay A. Rashed	PhD student	-	Luay A. Rashed @uotechnology.edu.iq
Abdulmunem R Abdulmunem	PhD. Mech. Eng. (2019)	Prof. Assistance	<u>Abdulmunem R</u> <u>Abdulmunem</u> @uotechnology.edu.iq
Nasar F. Hassan	PhD. Mech. Eng. (2012)	Prof. Assistance	Nasar F. Hassan @uotechnology.edu.iq
Assam K. Fadhal	PhD student	-	Assam K. Fadhal @uotechnology.edu.iq
Hind D. Salman	PhD student		@uotechnology.edu.iq

6. Credit Grading and GPA

Credits

University of Technology is following the bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structure and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who are failed a course. The grading system is defined as follows:

Grading Scheme						
	مخطط الدرجات					
Group	Grade	التقدير	Marks (%)	Definition		
Success	A - Excellent	امتياز	90 - 100	Outstanding		
Group	B-very Good	جيد جدا	80 - 89	Above average with some errors		
(50-100)	C - Good	جيد	70 – 79	Sound work with notable Error		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work with met minimum criteria		
Fail Group	FX – Fail	راسب	45-49	More work required but credit awarded		
(0-49)		قيد		_		
		المعالجة				
	F - fail	راسب	0 - 44	Considerable amount of work required		
Notes:	Notes:					
Marks with decimal places above or below 0.5 will rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The university has a policy NOT to condone "near pass fail" so the only adjustment to marks						

Calculation of the Cumulative Grade Point Average (CGPA)

The CGPA is calculated by the summation of each module score multiplied by ita ECTS, all are divided by the program total ECTS.

CGPA of a 4 – year B.SC. Degrees:

 $CGPA = [91^{st} module score x ECTS) + (2^{nd} module score x ECTS) + ...]/240$

awarded by the original marker(s) will be the automatic rounding outlined above.

7. Curriculum/Modules

Semester 1: 30 ECTS: 1 ECTS = 25 hrs

Code	Module	USSWL	SSWL	ECTS	Туре	Pre-request
	Crimes of the	17	33	2	S	-
CBRI201	Baath Regime in					
	iraq					
ADMA213	Advanced	87	63	6	В	-
ADMA215	Mathematics I					
COMP212	Computer Science	12	63	3	S	-
COMP212	II					
ELMA214	Electrical	62	63	5	С	-
ELMA214	Machines (DC)					
THER215	Thermodynamics	62	63	5	С	-
	Measurement &	62	63	5	С	-
MEIN216	Instrument					
ELC1217	Electronics	37	63	4	С	-
	Circuits					

Semester 2: 30 ECTS: 1 ECTS = 25 hrs

Code	Module	USSWL	SSWL	ECTS	Туре	Pre-request
ENLA221	English	42	33	3	S	-
ENLAZZI	Language II			5		
	Advanced	87	63	6	В	-
ADMS223	Mathematics II					
ADIVI5225	and Probability					
	and Statistics					
SPOR222	Sport	17	33	2	S	-
FLME224	Fluid	62	63	5	C	-
FLIVILZZ4	Mechanics			5		
ELCI225	Electrical	37	63	4	C	-
LLCIZZJ	Circuits					
STMA226	Strength of	62	63	5	C	
STIVIA220	Materials			5		-
	Electrical	62	63		С	
ELMA227	Machines			5		-
	(AC)					

8. Contact:

Program Manager: Ameer Abed Gaddoa, Prof. Assistance, PhD in Mech. Eng. (2016)

Program Coordinator: Ahmed Kamil Hasan Al-Ali, Prof. Assistance, PhD Electrical Eng. 2020

<u> Appendix 3 Modules Catalogue</u>

Table of Contents

- 1- Overview
- 2- Undergraduate Modules
- 3- Contact
- 1. Overview

This catalogue is about the courses (modules) given by the program of Energy and Renewable Engineering to gain the Bachelor of Science degree. This program delivers 48 Modules with 6000 total student workload hours and 240 total ECTS. The module deliver is based on the Bologna Process.

2. Undergraduate Courses

First Semester

Module 1

Code	Course/module Title	ECTS	Semester	
CBRI201	Crimes of the Baath	2	1	
	Regime in iraq			
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)	
2		33	17	
Description				
The goal of this course is to learn the students about making this generation aware of the				
crimes committed by the Baathist regime, and the extent of human rights violations				
publicly				

Code	Course/module Title	ECTS	Semester
ADMA213	Advanced Mathematics I	6	1
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
4	-	63	87
Description			

The mathematics work begins with the topics including sequence, convergence of sequence, series, power series, Fourier series. Laplace transform, inverse Laplace transform, and solution of differential equation using Laplace transform is also presented in this course.

Module 3

Code	Course/module Title	ECTS	Semester		
COMP212	Computer Science II	3	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
1	-/2/-/-	63	12		
Description					
This course deals wit	th C++ program and the foll	owing topics are include	ed in this course		
1- Introduction to C++					
2- Selection					
3- Iteration					
4- Array					
5- Pointer					
6- Reference					

Module 4

evaluate the machine performance.

Code	Course/module Title	ECTS	Semester	
ELMA214	Electrical Machines	5	1	
	(DC)			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	-/2-/-/-	63	62	
Description				
As electrical machines either it is a generator or a motor are importance in our daily life, this course deals with DC machines. It is essentially providing knowledge of the DC machine construction, working principle and mathematical models for different types of DC generator and DC motor. It is also introducing performance analysis of the DC based on studding different characteristics of the machines. Moreover, it deals with efficiency calculation to				

Code	Course/module Title	ECTS	Semester	
THER215	Thermodynamics	5	1	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	- /2/-/-/-	63	62	
Description				
Thermodynamics is the branch of physics that deals with the relationships between heat, work, temperature, and energy. Its principles are crucial for understanding how energy is transferred and transformed in physical and chemical processes.				

Module 6

Code	Course/module Title	ECTS	Semester	
MEIN216	Measurement &	5	1	
	Instrument			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	-/2/-/-/-	63	62	
Description				
This course deals with explaining the measurement process and its importance in our daily lives,				
clarifying the most important basic characteristics of the devices and how use these devices in				
the measurement process.				

Code	Course/module Title	ECTS	Semester	
ELC1217	Electronics Circuits	4	1	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	-/2/-/-/-	63	37	
Description				
This course specification provides the main features of the theory of electronic circuit for the				
students of 2 nd year in the Electromechanical Engineering Department. Learning outcomes				
which gained by this program will help a typical student to achieve and demonstrate the				
learning opportunities that are provided during the course study and to comply with the				
programmer specification as Energy and Renewable Energies Engineering.				

Second semester

Module 1

Code	Course/module Title	ECTS	Semester	
ENLA221	English Language II	3	2	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2 - 33 42		42		
Description				
The goal of this course is to build up the student's interest in fundamentals of the English				
language basics such as grammar, punctuation, tense types, reading skills, Writing skills, and presentation skills.				

Module 2

Code	Course/module Title	ECTS	Semester	
ADMS223	Advanced Mathematics II	6	2	
and Probability and				
	Statistics			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
4	-	63	87	
Description				
equation including differential equation, differential equation.	es the partial derivative, c variable separable, reduct exact differential equation The vector is also prese on, and engineering statistic	ion into separable, lin n, reduction into exact ented in this section.	ear and non linear , and second order The random variable	

Code	Code Course/module Title		Semester
SPOR222	Sport	2	2
Class (hr/w) Lect/Lab./Prac./Tutor		SSWL(h/sem)	USWL (h/sem)
2 - 33 17			
Description			

This course considers the main sport games.

Module 4

Code	Course/module Title	ECTS	Semester		
FLME224 Fluid Mechanics		5	2		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
2 -/ 2- / - 63 62					
Description					

Fluid mechanics is one of the basic sciences in which the laws of equilibrium and movement of fluids are studied. It can be divided into statics fluid and dynamics fluid. It has a wide application in hydraulic engineering and in the work of transporting and storing liquids and gases.

Module 5

Code	Course/module Title	ECTS	Semester	
ELCI225	Electrical Circuits	4	2	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	2 -/2-/- 63 37		37	
Description				
students of 2 nd year which gained by this learning opportunities	This course specification provides the main features of the theory of electric circuit for the students of 2 nd year in the Electromechanical Engineering Department. Learning outcomes which gained by this program will help a typical student to achieve and demonstrate the learning opportunities that are provided during the course study and to comply with the programmer specification as Energy and Renewable Energies Engineering.			

Code	Course/module Title	ECTS	Semester	
STMA226	Strength of Materials	5	2	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	- / 2 / - / -	63	62	
Description				
This course provides an understanding of the mechanics of deformable materials				
and structures. It is	ntroduces the concepts	of stress and strain, a	and basic structural	

elements like rods, beams, and shearing and bending elements.

Module 7

Code	Course/module Title	ECTS	Semester
ELMA227	Electrical Machines (AC)	5	2
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)
2	- / 2 / - / -	- / 2 / - / - 63 62	
	Descrip	tion	
playing essential part deals with transformer of the transformer and introducing performan Moreover, it deals w	electrical machine, transfe in our life regarding pow and three-phase induction three-phase induction mot ace analysis of the trans- vith prediction of the moto formance including torque	ver transmission and co motor. It is essentially tor construction, workin isformer based on its or equivalent circuit part	nsuming, this course providing knowledge g principle. It is also s equivalent circuit.

3. Contact:

Program Manager: Ameer Abed Gaddoa, Prof. Assistance, PhD in Mech. Eng. (2015)Program Coordinator: Ahmed Kamil Hasan Al-Ali, Prof. Assistance, PhD Electrical Eng. (2020)

<u> Appendix 4 Modules Description Form</u>

First Semester

Module Information			
Module Title	Crimes of the Baath Regime in Iraq	Module Delivery	
Module Type	Support	Theory	
Module Code	CBRI201		
ECTS	2		
Credit/year		Tutorial	

SWL/year	50		Practical
	1		1
Module level	1	Semester of Delivery	1
Module Leader	Sajad Qasim	College	
Module Leader	Assist Lecturer	e-mail	
Academic Title			
Module Tutor	-	Module Leader's	MSc.
		Qualification	
Peer Reviewer	-	e-mail	11536@uotechnology.edu.iq
Name			
Scientific	1/6/2023	e-mail	-
Committee			
Approval Date			
-	-	Version Number	1

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	• Making this generation aware of the crimes committed by the			
	Baathist regime			
	The extent of human rights violations publicly			
	• Spreading awareness of the extent of violation of Sharia and law			
Module Learning	The student will learn about generation aware of the crimes committed			
Outcomes	by the Baathist regime.			
Inductive Contents				
	1. Introducing the student to Rejecting Baathist			
	2. Familiarize students with Recognizing the ugliness crimes committed			
	2 Introducing students to the Killing, and slaughtering the Shiite Kurds			
	3. Introducing students to the Killing and slaughtering the Shiite Kurds			
	4. Introducing the student to the Hiding signs of genocide			
	5. Familiarize students with expressing an opinion.			

Learning and Teaching Strategies

Strategies		-	
Student Wor		cload (SWL)	
Structured SWL (h/sem)	33	Structured SWL (h/w)	2.00
Unstructured SWL (h/sem)	17	Unstructured SWL (h/w)	1.13
Total SWL (h/sem)	50		

		Module E	valuation		
		Time/No.	Weight	Week Due	Relevant
			(Marks)		Learning
					Outcome
Formative	Quizzes	-	-	-	-
Assessment	Assignments				All
	Projects /	Every 3 weeks	50%	Continuous	-
	Practice				
	Report	-	-	-	-
Summative	Midterm	-	-	-	-
Assessment	Exam				
	Exam	Every 3 weeks	50%	Continuous	All
	Total assessment			-	-

Delivery P	lan (Weekly Syllabus)
	Materials Covered
Week 1	Rejecting Baathist
Week 2	Recognizing the ugliness crimes committed
Week 3	Violations committed
Week 4	For the sake of humanity
Week 5	Oppressing.and exterminating.the people
Week 6	Cruelty, intimidation and torture
Week 7	Politics of repression
Week 8	Reject the idea of change
Week 9	expressing an opinion

Week 10	Burying crime scenes			
Week 11	Killing and	d slaughtering the Shiite Kurds		
Week 12	Concealing	g the evidence of crimes		
Week 13	Continuou	ıs killing		
Week 14	Hiding signs of genocide			
Week 15	Collectiv the people			
	Learning and Teaching Resources			
-	- Text Available in the			
	library		library	
Require	Required Texts A methodological book (Crimes of the Baath Yes			
	Regime in Iraq)Ministry of Higher Education			
	and Scientific Research			
Recommer	Recommended Texts			
Web	Websites			

First Semester

	М	odule Information	
Module Title	Advanced	Mathematics I	Module Delivery
Module Type	E	Basic	Theory
Module Code	ADI	MA213	
ECTS Credit		6	Lab
SWL		150	Tutorial
			Practical
			Seminar Seminar
Module level	1	Semester of Delivery	1
Module Leader	Ahmed Kamil	College	Electromechanical Eng.
	Hasan Al-Ali		Dept.
Module Leader	Assistance	e-mail	eme@uotechnology.edu.iq
Academic Title	Prof.		
Module Tutor	-	Module Leader's	PhD. Elec. Eng.
		Qualification	
Peer Reviewer	-	E-mail	50035@uotechnology.edu.iq
Name			
Scientific	-	E-mail	-
Committee			

Approval Date			
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module - Semester -				
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductiv	re Contents
Module Aims	In this course, students will learn: • Sequence • Laplace Transform • Inverse Laplace Transforms • Fourier Series • Power Series
Module Learning Outcomes	 In this course, - Computer Science students will learn: 1. Introduction to sequence, convergence of sequence 2. Introduction to series, Types of series, Convergence of series, Fourier series 3. Laplace transform and inverse Laplace transform.
Inductive Contents	 Sequences and series Arithmetic and geometric series Series of powers of natural numbers Convergent and divergent series Power series Standard series The binomial series Maclaurian and Taylor series. Fourier Series Laplace Transform L.T for standard important function Properties of L.T L.T of derivatives L.T of integral Periodic functions

Unit step functionInverse L.T
• Inverse L.T for standard important function
• Properties of inverse L.T
• Inverse L.T of derivatives
• Inverse L.T of integral
• Solution of ODE in L.T
• Double integral

Learning and Teaching Strategies		
Strategies The branch use a problem based learning which new and		
	student active method. The method help the student getting	
	the program outcomes.	

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)		Unstructured SWL (h/w)	5.8	
Total SWL (h/sem) 150				

Module Evaluation					
-		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects / Lab.	-	-	-	-
	Report	1	10%	11	6
Summative	Midterm Exam	1.5 hr	20%	9	LO # 1 – 6
Assessment	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Introduction to sequence, convergence of sequence
Week 2	Introduction to series, testing rule for series
Week 3	Taylor series
Week 4	Binomial series

Week 5	Fourier series
Week 6	Introduction to Laplace transform
Week 7	Laplace properties
Week 8	Inverse Laplace transform
Week 9	Introduction to Solution of inverse Laplace transform
Week 10	Mid-term Exam
Week 11	Examples of solution of inverse Laplace transform
Week 12	Introduction to solution of differential equation using Laplace transform
Week 13	Examples of solution of differential equation using Laplace transform
Week 14	Introduction to double integral
Week 15	Examples of double integral
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text			
		library		
Required Texts	Advanced Engineering Mathematics. K.A. Stroud,2003	YES		
Recommended Texts	Advanced Engineering Mathematics. K.A. Stroud,2003	YES		
Websites	-	-		

Module Information						
Module Title	Computer	r Science II	Module Delivery			
Module Type	Supp	olement	Theory			
Module Code	100	MP212				
ECTS Credit		3	Lab			
SWL		75	Tutorial			
			Practical			
			Seminar Seminar			
Module level	1	Semester of	1			
		Delivery				
Module Leader	Ameer Abed Gaddoa	College	Electromechanical Eng. Dept.			
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq			
Academic Title	Assistance					
Module Tutor	-	Module Leader's	PhD. Mech. Eng.			

		Qualification	
Peer Reviewer	-	e-mail	Ameer.A.Jaddoa@uotechnology.edu.iq
Name			
Scientific	-	e-mail	
Committee			
Approval Date			
-	-	Version Number	

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductiv	e Contents
Module Aims	Introduction & Basics
	Selection
	Iteration
	Functions
	 Arrays
	Pointers
	Strings
	Files
Module Learning Outcomes	In this course, for students will learn 1. Pre-Increment & post-increment
	operators.
	2. Conditional operator
	3. Switch.
	4. Loops.
	5. Standard functions.
	6. References
	7. Classes
Inductive Contents	In this course, students will learn: • Pre-Increment & post-increment
	operators.
	Conditional operatorSwitch.
	 Loops.
	 Standard functions.
	References
	 Classes

Learning and Teaching Strategies			
Strategies	The branch use a problem based learning which new and student active		
	method. The method help the student getting the program outcomes.		

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem) 12		Unstructured SWL (h/w)	0.80	
Total SWL (h/sem) 75				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Basics of C++
Week 2	Structure of a program, Basic Input / Output
Week 3	Variables Data Types,
Week 4	Operators, Increase and decrease (++,)
Week 5	Selection, Conditional structure (if), Conditional structure (Switch)
Week 6	Conditional Opterator
Week 7	Iteration, For Loop
Week 8	While loop
Week 9	dowhile loop
Week 10	Mid-term Exam
Week 11	Function
Week 12	Standard Function, and User Functions
Week 13	Arrays

Week 14	One-dimension arrays, Two-dimension arrays
Week 15	Files, Open files, Input / output from files, Files with Functions
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Available in the			
		library		
Required Texts	PROGRAMMING WITH C++, JOHN R.	YES		
	HUBBARD, SCHAUM'S OUTLINE SERIES,			
	McGRAW-HILL, 2000.			
Recommended Texts	-	-		
Websites	-	-		

	Mo	odule Information	
Module Title	Electrical Machines (DC)		Module Delivery
Module Type	(Core	Theory
Module Code	ELN	//A214	
ECTS Credit		5	📕 Lab
SWL]	125	Tutorial
			Practical
			Seminar 🗌
Module level	1	Semester of Delivery	
Module Leader	Ahlam L.	College	Electromechanical Eng.
	Shuraiji		Dept.
Module Leader	Prof. Assistance	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. in Electrical
		Qualification	
Peer Reviewer	-	e-mail	Ahlam L. Shuraiji
Name			@uotechnology.edu.iq
Scientific	-	e-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module - Semester -				
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outo	comes and Inductive Contents
Module Aims	 The main aims of this course are provide learners with knowledge and an understanding of the working principle, and constructional features of DC machines. Functionality of DC generators and DC Motors with their classification evaluate efficiency of the DC machines under different load operation conditions.
Module Learning Outcomes	 At the end of this course students will demonstrate the ability to Understand the concept of energy conversion from electrical form to mechanistical form and vice versa. Understand the principle operating of both DC generator and DC motor Analysis the armature reaction in DC machine Explain commutator process in DC machines Evaluate DC generator EMF, efficiency for different load conditions Evaluate different types of DC generators based on their performance characteristics Analysis back-EMF and torque of the DC motor Mention different speed control methods for DC motor based on the speed equation. Summarize losses that would be occurred on the dc machines and classified them.
Inductive Contents	 1-Introduction, Basics of electrotechnical energy conversion. 2- Construction of DC machine and operating principle of DC generation. 3- EMF equation of dc generator. 4- armature reaction and commutator

process in DC machines 5- classification of DC generator and	
mathematical model of each type.	
6- Voltage build up process in self-	
excited DC generator.	
7- Characteristics of DC generator.	
8- Torque equation of DC motor and	
back-EMF.	
9- Speed control methods of DC	
motor.	
10- Performance characteristics of DC	
motor	
11- losses and efficiency of DC	
machine.	

Learning and Teaching Strategies			
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting the program outcomes.		

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4.13	
Total SWL (h/sem) 125				

Module Evaluation					
Time/No		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 4
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment		100%	-	-

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Dc Machines construction
Week 2	Armature windings
Week 3	Armature reaction
Week 4	Types of Dc Generators
Week 5	Mathematical model of DC generator types
Week 6	Characteristics of DC generators
Week 7	Losses and efficiency
Week 8	Operating principle of DC motor
Week 9	Types of DC motor
Week 10	Mid-term Exam
Week 11	Mathematical model of DC motor types
Week 12	Characteristics of DC motor
Week 13	Speed control of DC motor
Week 14	Starting of DC motor
Week 15	Losses and efficiency of DC motor
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	P. C. Sen, "Principles of electric	-		
	machines and power electronics", John			
	Willy and Sons Inc., 1997.			
Recommended Texts		-		
Websites	-	-		

Module Information				
Module Title	Thermodynamics	Module Delivery		
Module Type	Core	Theory		
Module Code	THER215			
ECTS Credit	5	Lab		

SWL	125		Tutorial
			Practical
			🔲 Seminar
Module level	1	Semester of Delivery	1
Module Leader	Amged Al Ezzi	College	Electromechanical Eng.
			Dept.
Module Leader	Assistance prof.	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	
Peer Reviewer	-	E-mail	Amged Al Ezzi
Name			@uotechnology.edu.iq
Scientific	-	E-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Modules				
Prerequisite Module - Semester -				
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductiv	e Contents		
Module Aims	Definition of the thermodynamics basics and its units . Definition of Energy Balance . Definition of Newton's laws of Thermodynamics . Definition of the Thermodynamics processes . Definition of power plant cycles . Definition of the property of entropy		
Module Learning Outcomes	 In this course, students will learn: 1. Fundamentals of thermodynamic 2. How to use Newton law of thermodynamics 3. Introduction to thermodynamic process. 		
Inductive Contents	 In this course, for engineering mechanics students will learn: 1 System and Surroundings: • System: The part of the universe being studied, typically defined by boundaries. 		

• Surroundings: Everything outside the system.
2 Laws of Thermodynamics:
• Zeroth Law: If two systems are each
in thermal equilibrium with a third
system, they are in thermal
equilibrium with each other. This law
defines temperature.
• First Law (Law of Energy
Conservation): Energy cannot be
created or destroyed, only transferred
another. Mathematically, $\Delta U = Q - U$
W, where ΔU is the change in internal
energy, Q is heat added to the system,
and W is work done by the system.
• Second Law: The total entropy of an
isolated system can never decrease
over time. Entropy, a measure of
disorder, tends to increase, explaining
the natural tendency towards energy
dispersal and equilibrium.
• Third Law: As the temperature of a
system approaches absolute zero, the
entropy of the system approaches a
minimum value.
3 Key Processes:
• Isothermal Process: Occurs at a
constant temperature.
Adiabatic Process: Occurs without
heat exchange between the system and
its surroundings.
• Isobaric Process: Occurs at a constant
pressure.
• Isochoric Process: Occurs at a
constant volume.
4 Applications:
• Thermodynamics is applied in various
fields such as engineering (design of
engines and refrigerators), chemistry
(reaction spontaneity and
equilibrium), and even biology
(metabolic processes).
Thermodynamics provides a framework
for understanding how energy flows and
transforms in natural and engineered

systems, making it a fundamental aspect of both theoretical and applied sciences.

Learning and Teaching Strategies			
Strategies	Strategies The branch use a problem based learning which new and student		
	active method. The method help the student getting the program		
	outcomes.		

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem) 62		Unstructured SWL (h/w)	4.13	
Total SWL (h/sem)	125	-	-	

Module Evaluation					
	Time/No.			Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	1	-		LO # 3
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
	Total assessment		100%	-	_

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Basics of Thermodynamics
Week 2	Energy balance
Week 3	Newton's thermodynamics laws
Week 4	Pressure, volume, and Temperature
Week 5	Test
Week 6	Thermodynamics processes

Week 7	Heat engine, heat pump
	Refrigerator
Week 8	Carnot cycle
Week 9	Rankine cycle
Week 10	Test
Week 11	Otto and Desal cycle
Week 12	Boiler and Turbine
Week 13	Heat exchanger and pumps
Week 14	Entropy
Week 15	Test
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
	Text	Available in the	
		library	
Required Texts	Thermodynamic an Engineering Approach,	-	
	Yunus A. Cengel, Michael A. Boles, 5 th edition		
	2004		
Recommended Texts	Thermodynamic an Engineering Approach,	-	
	Yunus A. Cengel, Michael A. Boles, 5 th edition		
	2004		
Websites	-	-	

	Mo	odule Information		
Module Title	Measuremen	t & Instrument	Module Delivery	
Module Type	(Core	Theory	
Module Code	ME	IN216		
ECTS Credit		5	Lab	
SWL		125	Tutorial	
			Practical	
			Seminar	
Module level	1 Semester of Delivery		1	
Module Leader	Hashima Shried College		Electromechanical Eng.	

			Dept.
Module Leader Academic Title	Assistance Prof.	e-mail	eme@uotechnology.edu.iq
Module Tutor	-	Module Leader's Qualification	MSc. in Mech. Eng.
Peer Reviewer Name	-	e-mail	
Scientific Committee Approval Date	-	e-mail	-
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	1-Introducing the student to the basic	
	principles of measurements and general	
	characteristics of the devices	
	2- Explain design and construction of the	
	devices and knowing all their parts.	
	3- Explain the working principle of these	
	devices	
Module Learning Outcomes	 Define the basics in Measurements such as the performance characteristics of an instrument which are include: Accuracy, Precision, Range, Threshold, Learn number of divisions on scale, Measuring units, deflection of the pointer and types of errors in Measurement. Understand Relative limiting Errors and their applications. 	
	• Develop the ability to apply combination of quantities with limiting errors.	
	• Recognize Electromechanical Indicating Instruments and essentials of indicating	
	instruments includes (deflecting, controlling	
	and damping) torque.	
	• Explain types of instruments such as:	
	Permanent magnet moving coil (PMMC),	
	Moving Iron, Electrodynamometer	

Measurements and Performance Characteristics, Errors in Measurement. 2- Relative limiting Errors (er). 3- Statistical analysis, combination of quantities with limiting errors. 4- Electromechanical Indicating Instruments, Methods of Providing Controlling Torque 5- Permanent magnet moving coil (PMMC). 6- Extension of Ammeter and Voltmeter range by using direct and indirect method. 7- Moving IRON Instrument. 8- Electrodynamometer Instruments – Ammeter, Voltmeter and Wattmeter 9- Induction Type Wattmeter		 Instruments and Induction Type Wattmeter. Describe design Ammeter, Voltmeter and Wattmeter for each instrument. Identify the construction and working principles of devices. Summarize DC and AC Bridges. Discuss the procedure experimental laboratory such Calibration of Ammeter, Calibration of Ammeter and AC Bridges.
Measurements and Performance Characteristics, Errors in Measurement. 2- Relative limiting Errors (er). 3- Statistical analysis, combination of quantities with limiting errors. 4- Electromechanical Indicating Instruments, Methods of Providing Controlling Torque 5- Permanent magnet moving coil (PMMC). 6- Extension of Ammeter and Voltmeter range by using direct and indirect method. 7- Moving IRON Instrument. 8- Electrodynamometer Instruments – Ammeter, Voltmeter and Wattmeter 9- Induction Type Wattmeter		1. •Ability to solve problems
10- DC wheatstone Bridge and AC	Inductive Contents	 1-Introduction, Basics of Measurements and Performance Characteristics, Errors in Measurement. 2- Relative limiting Errors (er). 3- Statistical analysis, combination of quantities with limiting errors. 4- Electromechanical Indicating Instruments, Methods of Providing Controlling Torque 5- Permanent magnet moving coil (PMMC). 6- Extension of Ammeter and Voltmeter range by using direct and indirect method. 7- Moving IRON Instrument. 8- Electrodynamometer Instruments – Ammeter, Voltmeter and Wattmeter

Learning and Teaching Strategies		
Strategies	The branch use a problem based learning which new and student active	
method. The method help the student getting the program outcomes.		

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.0				
Unstructured SWL (h/sem)62Unstructured SWL (h/w)4.13				
Total SWL (h/sem)	125	_	-	

Module Evaluation

		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects / Lab.	-	-	-	-
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative Assessment	Midterm Exam	1.5 hr	20%	11	LO # 1 – 5
	Final Exam	3 hr	50%	17	All
	Total assessment		100%	-	-

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Introduction to measurements:
	Accuracy, precision, resolution, linearity, sensitivityetc.)
Week 2	Measurement errors:
	Absolute error ,relative error ,types of error and their calculations ,limiting errors
Week 3	General Theory of Analog Measuring Instruments: Indicating type: PMMC,
XX 1 4	moving iron,
Week 4	Electronic Analogue Measuring Instruments: DC&AC voltage and current
XX7 1 7	measurement, power and resistance measurement.
Week 5	Bridges and their applications :
	DC bridge (Wheatstone, Kelvin,)
Week 6	AC bridge (Maxwell, Hay's, Wien Bridge)
week o	Cathode Ray Oscilloscope : ()
Week 7	Transducers:
Week /	Classification and Selection, acceleration thermo-electric.
Week 8	Signal analysis :
	Wave analyzer, Harmonic distortion analyzer, Spectrum analyzer
Week 9	Digital Instruments :
	D/A &A/D, Voltage and current.
Week 10	resistance digital measurement
Week 11	Mid-term Exam
Week 12	Formal Reports: Closure
Week 13	primary sensing elements (Displacement ,LVDT)
Week 14	CRT, Block diagram ,applications
Week 15	Rrview
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
	Text	Available in the	
		library	
Required Texts			
Recommended Texts	-	-	
Websites	-	-	

	М	odule Information	
Module Title	Electron	ics Circuits	Module Delivery
Module Type	(Core	Theory
Module Code	EL	C1217	
ECTS Credit		4	Lab
SWL		100	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Sahar R. Al-	College	Electromechanical Eng.
	Sakini, Ghassan	_	Dept.
	Abdul-Hussein		
	Bilal		
Module Leader	Asst. Prof.	e-mail	Sahar R.
Academic Title			@uotechnology.edu.iq
Module Tutor	-	Module Leader's	Dr.
		Qualification	
Peer Reviewer	-	E-mail	10755@uotechnology.edu.iq
Name			
Scientific	-	E-mail	_
Committee			
Approval Date			
	-	Version Number	_

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	Students successfully completing this course	
	should be able to perform the following tasks	

	 with minimum degree of difficulty: The ability to compute Simplified Structure and Mode of operation BJTS transistors circuits an understanding the basic structure-Characterizing BJT amplifier- CE amplifier- BC amplifier Multistage amplifier- Differential amplifier; an introduction to field effect transistor Characteristic of JEFT and biasing circuits, COSFET, DMONSFET, MOS-FET, C/CS of transistor MOSFET, amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG; the ability to evaluate power amplifiers class A, class B, class AB, class C; the ability to use oscillator Feedback loop and the oscillator circuits, LC-oscillator circuits, crystal oscillators.
Module Learning Outcomes	 Most students will be able to calculate BJTS transistors circuits with a reasonable degree of skill. Students should be able to use the basic structure- Characterizing BJT amplifier- CE amplifier- BC amplifier- Multistage amplifier-Differential amplifier. Students should be made an introduction to field effect transistor Characteristic of JEFT and biasing circuits, COSFET, D-MONSFET, MOS-FET, C/CS of transistor MOSFET, amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG. The students should be made aware of the resonance circuits interpretation. The students should be able to evaluate power amplifiers class A, class B, class AB, class C.

	 The students should be able to use oscillator Feedback loop and the oscillator criterion, the oscillator circuits, RC- oscillator circuits, LC- oscillator circuits, crystal oscillators.
Inductive Contents	 Fundamentals of DC Circuit. Diodes. Introduction to the Transistor The Transistor Switch Fundamentals of AC Circuits Filters Resonant Circuits Transistor Amplifiers Oscillators The Transformer Power Supply Circuits

Learning and Teaching	g Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)63Structured SWL (h/w)4.0			
Unstructured SWL (h/sem)37Unstructured SWL (h/w)2.46			
Total SWL (h/sem)	100	-	-

Module Evaluation					
		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All

Total assessment	100%	-	-
------------------	------	---	---

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Bipolar junction Transistors (BJTS)
Week 2	Simplified Structure and Mode of operation
Week 3	Type of transistor Connection
Week 4	characteristic curve- load line-connection analysis of each type of connection
Week 5	The BJT as an amplifier an as a switch
Week 6	Biasing in BJT amplifier circuits, BJT amplifier: The basic structure
Week 7	Characterizing BJT amplifier-CE amplifier- BC amplifier- Multistage amplifier-
	Differential amplifier
Week 8	Field Effect transistor (FET), Characteristic of JEFT and biasing circuits
Week 9	COSFET, D-MONSFET, MOS-FET, C/CS of transistor MOSFET
Week 10	amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG
Week 11	Power Amplifiers: class A, class B, class AB, class C
Week 12	Oscillator: Feedback loop and the oscillator criterion
Week 13	the oscillator circuits, RC
Week 14	oscillator circuits, LC- oscillator circuits
Week 15	crystal oscillators
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources				
	Text	Available	in	the	
		library			
Required Texts	Electronic Devices, Thomas L. Floyd, 10th	Pdf			
	Edition, 2018				
Recommended Texts	-	-			
Websites	-	-			

Second Semester

Module Information			
Module Title English Language II Module Delivery			
Module Type	Support	Theory	
Module Code	ENLA221		

ECTS Credit	3		Lab
SWL	75		Tutorial
			Practical
			Seminar
Module level	1	Semester of	1
		Delivery	
Module Leader	Dr. NASSR FADHIL HUSSEIN	College	Electromechanical Eng. Dept.
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq
Academic Title	assistance		
Module Tutor	-	Module Leader's Qualification	PhD. in Mech. Eng.
Peer Reviewer	-	E-mail	
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductiv	e Contents
Module Aims	• Defining the grammar writing skills
	Defining verbal presentation skills
	• Defining of the content that needs to be
	presented
	• Organization of the content to make it
	easy to be followed.
	• Data presentation in such audience is
	easily able to grasp significance
Module Learning Outcomes	Students will learn:
	• Tense types, and parts of speech.
	• Sentence structure, affixes & prefixes,
	and Engineering Vocabulary.
	• Punctuations, and the differences
	between British and American English.
	• Writing skills (essay and Email)

	• Reading Skills (how to be an effective
	reader).
	• Presentation Skills and discussion skills.
Inductive Contents	□ Part of speech, and Sentence
	Structure
	□ Tense types, and Passive Voice
	□ Transitions Words
	□ How to Write an Email
	□ How to write an essay
	□ Reading Skills
	□ Vocabulary, Punctuation, and the
	way to Vocabulary Development.
	□ Discussion Skills, and How to
	give a good presentation
	\Box Affixes, Prefixes , and
	Differences between British and
	American English.

Learning and Teaching Strategies				
Strategies	Strategies The branch use a problem based learning which new and student active			
	method. The method help the student getting the program outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.0					
Unstructured SWL (h/sem)42Unstructured SWL (h/w)2.8					
Total SWL (h/sem) 75					

Module Evaluation						
		Time/No.	Weight	Week Due	Relevant Learning	
			(Marks)		Outcome	
Formative	Quizzes	1	10%	5	LO # 1, 2	
Assessment	Assignments	1	10%	7	LO # 3, 4	
	Projects /	-	-	-	-	
	Lab.					
	Report	-	10%	-	-	
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 4	
Assessment	Exam					
	Final Exam	3 hr	50%	17	All	
	Total assessment			-	-	

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Parts of speech
Week 2	Sentence Structure: Sentence Types
Week 3	Tenses
Week 4	Transitions Words
Week 5	How to Write an Email in English
Week 6	Discussion Skills
Week 7	How to write an essay
Week 8	How to be an effective reader
Week 9	Classroom Language
Week 10	Engineering Vocabulary
Week 11	Vocabulary Development
Week 12	Punctuation
Week 13	Presentation Language
Week 14	Affixes & Prefixes
Week 15	Differences between British and American English
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts		-		
Recommended Texts		-		
Websites	-	-		

Module Information					
Module Title	Advanced Mathematics II and			Module Delivery	
	Probability	and Statistics			
Module Type	E	Basic		Theory	
Module Code	ADMS223			Lecture	
ECTS Credit	6			Lab	
SWL	150			Tutorial	
				Practical	
				Seminar	
Module level	1	Semester of		1	

		Delivery	
Module Leader	Ahmed Kamil	College	Electromechanical Eng. Dept.
	Hasan and		
	Mahomed		
	Mustafa		
Module Leader	Assistance	E-mail	eme@uotechnology.edu.iq
Academic Title	Prof		
Module Tutors	-	Module Leader's	Phd. Elect. Eng.
		Qualification	Phd. Mech. Eng
Peer Reviewer	-	E-mail	Ahmed.k.alali@uotechnology.edu.iq
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules					
Prerequisite Module	-	Semester	-		
Co-requisite Module	-	Semester	-		

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	The students will learn the second part of the basic math and			
	principle of statistics.			
Module Learning Outcomes	 In this course, for students will learn 1. Differentiation (Derivative Definition, Techniques of Derivative, Applications) 2. Differentiation (Parametric Equations, Implicit Differentiation) 3. Integration (Definite Integrals, Properties, Relation Between Indefinite & definite Integrals) 4. Differential Equations D.E. 1st degree equation 5. Differential Equations D.E. 2 nd degree equation 6. Vector. 7. Random variable and probability distribution 8. Engineering Statistic. 			
Inductive Contents	 In this course, students will learn: Differentiation (Derivative Definition, Techniques of Derivative, Applications) Area between Curve and y-axis, Area Between Two Curves) Differential Equations D.E, 1st degree equation: 			

 (1-Variable Separable, 2- reduction into separable, 3- Linear differential equation, 4- non linear differential equation 5- exact differential equation 6- Bernoulli's Equations 7- reduction into exact) Differential Equations D.E. 2nd degree equation:
 Vector Definition of random variable, discrete and continuous random variables Types of statistics (mean, variance, and standard deviation).

Learning and Teaching Strategies				
Strategies	Strategies The branch use a problem based learning which new and student active			
	method. The method help the student getting the program outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.0					
Unstructured SWL (h/sem)87Unstructured SWL (h/w)5.8					
Total SWL (h/sem) 150					

		Module	Evaluation		
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2, 3
Assessment	Assignments	1	10%	7	LO # 4, 5, 6
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pla	Delivery Plan (Weekly Syllabus)	
	Materials Covered	
Week 1	Differentiation	
	Derivative by definition	
	Techniques of differentiation	

	Applications
Week 2	Chain rule, chain rule for three independent variables
Week 3	Implicit differentiation
	Directional derivative
	Gradient vector
Week 4	Properties of directional derivative
	Gradients and tangents to level curves
Week 5	Solution of first order differential equation
	Variable separable Method
Week 6	Solution of first order differential equation
	Reduction into separable, and linear differential methods
Week 7	Solution of first order differential equation
	Non linear differential, Bernoulli methods
Week 8	Solution of first order differential equation
	Exact differential and reduction into exact methods
Week 9	Mid-term Exam
Week 10	Solution of second order differential equation
Week 11	Tripple integral
Week 12	Vector
Week 13	Introduction to probability, Random experiment, Sample Spaces, Events,
	Probability
Week 14	Random variables and probability distributions
Week 15	Mathematical expectation and variance
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
-	- Text		
		library	
Required Texts	Thomas Calculus, George B. Thomas et al, 12 th ,	YES	
	edition, 2010, USA.		
Recommended Texts	-	-	
Websites	-	-	

	Module Information	
Module Title	Sport	Module Delivery
Module Type	Support	Theory
Module Code	SPOR222	
ECTS Credit	2	🗌 Lab

SWL	50		Tutorial Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Muaid Waleed	College	Electromechanical Eng.
			Dept.
Module Leader	Asst. Prof.	e-mail	10755@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	MsC.
		Qualification	
Peer Reviewer	-	E-mail	10755@uotechnology.edu.iq
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
	-	Version Number	_

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims		Develop the ability of the students to		
		understand the main sport activities		
Module Learning Outc	omes	In this course, students will learn:		
		1- Football		
		2- Basketball		
Inductive Contents		• Football		
		• Basketball		
Learning and Teaching	Strategies			
Strategies	gies The branch use a problem based learning which new and s			
	active method. The n	nethod help the student getting the program		
	outcomes.			

Student Workload (SWL)				
Structured SWL (h/sem)33Structured SWL (h/w)2.0				
Unstructured SWL (h/sem)17Unstructured SWL (h/w)1.13				

Total SWL (h/sem)	50	-	-
-------------------	----	---	---

Module Evaluation					
		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pla	an (Weekly Syllabus)
	Materials Covered
Week 1	Sports - concept, benefits and types
Week 2	Fitness - the concept and elements of fitness
Week 3	Football - concept + history
Week 4	Football - basic soccer skills
Week 5	Football Law - Article 1, 2
Week 6	Football Law - Articles 3, 4, 5
Week 7	Basketball - concept + history
Week 8	Basketball - basic basketball skills
Week 9	Anatomy
Week 10	The skeleton
Week 11	Circulatory system
Week 12	Muscular system - concept + muscle injuries
Week 13	Scouting - concept + stages + scouting law
Week 14	Biorhythm - concept + benefits + historical overview
Week 15	Biorhythm cycles
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text	Available	in	the	
Required Texts	Volleyball (history - skills - plans - game	Pdf			

	management - and training)		
	Series/basketball basics		
	Sports training and future prospects		
	Applications in sensory education		
	Rapid methods and techniques of sports training		
	Football law		
Recommended Texts	-	-	
Websites	-	-	

	М	odule Information	
Module Title	Fluid Mechanics		Module Delivery
Module Type	(Core	Theory
Module Code	FL	ME224	
ECTS Credit		5	Lab
SWL		125	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	
Module Leader	Ibtisam A.	College	Electromechanical Eng.
	Hassan		Dept.
Module Leader	Prof.	e-mail	Ibtisam A. Hassan
Academic Title			@uotechnology.edu.iq
Module Tutor	-	Module Leader's	PhD. Mech. Eng.
		Qualification	
Peer Reviewer	-	E-mail	-
Name			
Scientific	-	E-mail	_
Committee			
Approval Date			
	-	Version Number	_

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	Students will learn how to apply the value of properties of the fluid			
	and the forces in continuity and energy and momentum equation. Also			

	analysis the boundary layer.			
Module Learning	In this course, students will learn how to apply the value of properties			
Outcomes	of the fluid and the forces in continuity and energy and momentum equation. Students learn how to apply the basic principles from physics and fluid mechanics to solve the problem of static and dynamic fluid. Students will also learn how to calculate the losses in the fluid flow.			
Inductive Contents	Fluid properties			
	2. Measurement of pressure			
	3. Flow classification			
	4. Acceleration analysis			
	5. Applications of Bernoullis Equations			
	6. Momentum Equation and its applications			
	7. Laminar and Turbulent flow in pipes			
	8. Pressure heat losses in pipes and fittings			
	9. Boundary layer			

Learning and Teaching Strategies					
Strategies	The branch use a problem based learning which new and student active				
method. The method help the student getting the program outcomes.					

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.0				
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4.13	
Total SWL (h/sem) 125 -				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	1	-	14	LO # 5
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All

Total assessment	100%	-	-
------------------	------	---	---

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Introduction /Dimensions and units of Measurement
Week 2	Fluid properties
Week 3	Fluids in Equilibrium (fluid statics
Week 4	Measurement of pressure and pressure difference
Week 5	Hydrostatics Thrusts on submerged surfaces
Week 6	Principle of fluid motional flow classification
Week 7	Flow classification /continuity equation
Week 8	Bernoulli's Equations
Week 9	Application of Bernoulli's Equation
Week 10	Mid-term Exam
Week 11	Momentum Equation and some of its Applications
Week 12	Laminar and Turbulent flow in pipes
Week 13	Pressure heat losses in pipes and Fittings
Week 14	Boundary layer and its Kinds
Week 15	Preparatory week before the final Exam

Learning and Teaching Resources				
	Available in the			
		library		
Required Texts	Fluid Mechanics,	-		
	Victor. Streeter& E. Benjamin Wylie, 6th Ed.,			
	McGraw-Hill, 1975			
Recommended Texts		-		
Websites	-	-		

Module 5

Module Information				
Module Title Electrical Circuits Module Delivery				
Module Type	Theory			
Module Code	ELCI225	Lecture		

ECTS Credit		4	Lab
SWL	100		Tutorial
			Practical
			Seminar
Module level	1	Semester of	1
		Delivery	
Module Leader	Sahar R. Al-	College	Electromechanical Eng. Dept.
	Sakini,		
	Ghassan		
	Abdul-		
	Hussein Bilal		
Module Leader	Assistance	e-mail	Sahar R. @uotechnology.edu.iq
Academic Title	Prof		
Module Tutor	-	Module Leader's	PhD. Elec. Eng.
		Qualification	
Peer Reviewer	Peer Reviewer -		
Name			
Scientific	Scientific -		-
Committee			
Approval Date			
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning	Outcomes and Inductive Contents			
Module Aims	Students successfully completing this course should be able to			
	perform the following tasks with minimum degree of difficulty:			
	1. To develop an understanding of the fundamental laws and			
	elements of electrical circuits.			
	2. To learn the energy properties of electric elements and the			
	techniques to measure voltage and current.			
	3. To develop the ability to apply circuit analysis to DC and AC circuits			
	4 To understand transient and steady-state response of RLC			
	circuits and to understand advanced mathematical methods			
	such as Laplace transforms for solving circuit problems.			
	5 To provide an exposure to P-Spice.			

Module Learning Outcomes	 These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. Lecturer method (L) needs not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. 2. Use of Video/Animation to explain functioning of various concepts. 3. Encourage collaborative (Group Learning) Learning in the class. 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyses information rather than simply recall it. 6. Introduce Topics in manifold representations. 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them. 8. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.
Inductive Contents	 Natural and Step Responses of First and Second Order Circuits Natural Responses of a Series and a Parallel RLC Circuits Step Responses of a Series and a Parallel RLC Circuits Balanced Three-Phase Voltages-part1 Balanced Three-Phase Voltages- part2 Resonance Circuits- part1 Resonance Circuits- part2 Two-Port Networks-part1 Two-Port Networks part2 Two-Port Networks part3 mini-project. Review

Learning and Teaching	g Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.0				

Unstructured SWL (h/sem)	37	Unstructured SWL (h/w)	2.46
Total SWL (h/sem)	100	-	-

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes		10%		
Assessment	Assignments		10%		
	Projects /	1.5/2	-	7, 10	LO # 1-7
	Lab.				
	Report		10%		
Summative	Midterm	1.5 hr	20%	12	All
Assessment	Exam				
	Final Exam	3 hr	50%	15	All
Total assessment		100%	-	-	

	Delivery Plan (weekly lab. Syllabus)
	Materials Covered
Week 1	Natural and Step Responses of First and Second Order Circuits
Week 2	Natural and step responses of an RL circuit 1
Week 3	Natural and step responses of an RC circuit.1
Week 4	Natural and step responses of a Parallel RLC circuit
Week 5	Natural and step responses of a Series RLC circuit
Week 6	Balanced Three-Phase Circuits
Week 7	Balanced 3-phase voltages, Balanced WYE-WYE connection
Week 8	Balanced WYE- Delta connection
Week 9	Balanced Delta - Delta connection.
Week 10	Mid-term Exam
Week 11	Power in balanced 3-phase system
Week 12	Modifying and Maneuvering.
Week 13	Resonance circuits
Week 14	Series resonance, Parallel resonance, Transfer function, Decibel scale, Bode plots
Week 15	Two-Port Networks: (Impedance parameters, Admittance parameters, Hybrid
	parameters, Transmission parameters)
Week 16	Preparatory week before the final Exam -

Learning and Teaching Resources

	Text	Available in the
		library
Required Texts	Basic AC circuits, John Clayton Rawlins.2nd	-
	Edition, 2000.	
Recommended Texts		-
Websites	-	-

Module 6

Module Information					
Module Title Stree		of Materials	Module Delivery		
Module Type	(Core	Theory		
Module Code	STN	/IA226	Lecture		
ECTS Credit		5	🔳 Lab		
SWL		125	Tutorial		
			Practical		
			Seminar		
Module level	1	Semester of Delivery	1		
Module Leader	Muhannad Zaidan	College	Electromechanical		
	Khalifa		Eng. Dept.		
Module Leader	Prof.	e-mail	Muhannad Zaidan		
Academic Title			Khalifa		
			@uotechnology.edu.iq		
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.		
		Qualification			
Peer Reviewer Name	-	e-mail			
Scientific Committee	Scientific Committee -		-		
Approval Date					
	-	Version Number	-		

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	 Introduces the fundamental concepts in mechanics of materials by study of the behavior of solid bodies under loads and deflections. Study the simple bending theory for 			
	beams and the simple torsion theory for shafts			

	 (circular) and non-circular, deflection of beams, complex stresses, compounds beam. Illustration and discussion the principles of free & forced vibrations and definition with and without damping. Proceeding to the Student free & forced vibrations of single degree of freedom and two degree of freedom.
Module Learning Outcomes	 This course will enable students; 1. To understand the basic concepts of the stresses and strains for different materials and strength of structural elements. 2. To know the development of internal forces and resistance mechanism for one dimensional and two dimensional structural elements. 3. To analyse and understand different internal forces and stresses induced due to representative loads on structural elements. 4. To analyse and understand principal stresses due to the combination of two dimensional stresses on an element and failure mechanisms in materials. 5. To evaluate the behavior of torsional
Inductive Contents	members, columns and struts. Module (1): Simple Stresses and Strain: Introduction, Definition and concept and of stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship.
	Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal

Module (3): Bending and Shear Stresses in Beams: Introduction, pure bending theory, Assumptions, derivation of bending equation, modulus of rupture, section modulus, flexural
Introduction, pure bending theory, Assumptions, derivation of bending equation,
Assumptions, derivation of bending equation,
modulus of runture section modulus flexural
rigidity. Expression for transverse shear stress
in beams, Bending and shear stress
distribution diagrams for circular, rectangular,
'I', and 'T' sections. Shear centre(only
concept).
Module (4): Torsion in Circular Shaft:
Introduction, pure torsion, Assumptions,
derivation of torsion equation for circular
shafts, torsional rigidity and polar modulus
Power transmitted by a shaft, combined
bending and torsion.

Learning and Teaching	Strategies
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting the program outcomes.

Student Workload (SWL)						
Structured SWL (h/sem)63Structured SWL (h/w)4.0						
Unstructured SWL (h/sem)62Unstructured SWL (h/w)						
Total SWL (h/sem) 125						

Module Evaluation						
		Time/No.	Weight	Week Due	Relevant Learning	
			(Marks)		Outcome	
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3	
Assessment	Assignments	1	10%	7	LO # 4 , 5	
	Projects /	1	-		LO # 3	
	Lab.					

	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment			100%	-	-

	Delivery Plan (Weekly Syllabus)
	Introduction to dynamic.
Week 1	SIMPLE STRESS AND STRAIN
	1.1 Normal Stress and Strain
	1.2 Mechanical Properties of Material
	1.3 Elasticity and Plasticity
	1.4 Sign convention for direct stress and strain
	1.5 Linear elasticity
Week 2	1.6 Hooke's law
	1.7 Poisson's Ratio
	1.8 Shear stress and strain
	1.9 Allowable Stresses & Allowable Load
	1.10 Ductile material
Week 3	1.12Brittle material
	1.1 3 Application of Poisson's Ratio to a two dimensional stress system
	1.14 Modulus of rigidity
Week 4	2. SHEARING FORCE AND BENDING MOMENT DIAGRAMS
	2.1 Shearing force and bending moment
	2.1.1 Shearing force (S.F.) sign convention
	2.1.2 Bending moment (B.M.) sign convention
	2.2 S.F. and B.M. diagrams for beams carrying concentrated loads only
Week 5	2.3 S.F. and B.M. diagrams for uniformly distributed loads
	2.4 S.F. and B.M. diagrams for combined concentrated and uniformly distributed
	loads
	2.5 Points of contrafexure
	2.6 Relationship between S.F. Q, B.M. M, and intensity of loading w
	2.7 S.F. and B.M. diagrams for an applied couple or moment
Week 6	2.8 S.F. and B.M. diagrams for inclined load
	2.9 Graphical construction of S.F. and B.M. diagrams

r	
	2.10 S.F. and B.M. diagrams for beams carrying distributed loads of increasing
	value
	2.1 1 S.F. at points of application of concentrated loads
Week 7	3. DEFLECTION OF BEAMS
	3.1Differential Equation of the Deflection Curve
	3.2 Deflection Formulas
	3.3 Deflection by Integration of the Bending-Moment Equation
	3.4 Deflection by Integration of the Shear Force ND Load Equation
	3.5 Method of Superposition
	3.6 Moment- Area Method
	3.7 Non prismatic Beams
Week 8	3.8 Strain Energy
	3.9 Castigliano's Theorem
	3.10 Deflection Produced by Impact-Temperature Effects
Week 9	4.TORSION
	4.1 Torsion Deformation
	4.2 Circular Bar and Tube
	4.3 Non Uniform Torsion
	4.4 Pure Shear
	4.5 Transmission of Power
Week 10	.6 Statically Indeterminate Torsional Members
	4.7 Strain Energy in Torsion
	4.8 Thin-Walled Tubes
	4.9 Stress Concentration in Torsion.
Week 11	OSCILLATORY MOTION
	5.1 Harmonie Motion
	5.2 Periodie Motion
	5.3 Vibration Terminology.
Week 12	FREE VIBRATION
	6.1 Vibration Model
	6.2 Equations of Motion: Natural Frequency
	6.3 Energy Method
	6.4 Rayleigh Method: Effective Mass
	6.5 Principle of Virtual Work
	6.6 Viscously Damped Free Vibration
	6.7 Logarithmie Decrement
	6.8 Coulomb Damping

Week 13	HARMONICALL Y EXCITED VIBRATION
	7.1 Forced Harmonie Vibration
	7.2 Rotating Unbalance
	7.3 Rotor Unbalanee
	7.4 Whirling of Rotating Shafts
Week 14	7.5 Support Motion
	7.6 Vibration Isolation
	7.7 Energy Dissipated by Damping
	7.8 Equivalent Viscous Damping
	7.9 Structural Damping.
Week 15	NOISE SOURCES AND THEIR MEASUREMENT
	8.1 Sources of Noise
	8.2Choice of noise measure
	8.3 Industrial noise
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources		
	Text	Available in the
		library
Required Texts	• Mechanics of Materials I., E. J. HEARN, THIRD EDITION, 2007.	-
	• Strength of materials, G. G. Jon, 2009.	
	Mechanical vibration by S.S. Rao.	
Recommended Texts		-
Websites	_	-

Module 7

Module Inform	ation	
Module Title	Electrical Machines (AC)	Module Delivery
Module Type	Core	Theory

Module Code	ELMA227		□ Lecture ■ Lab
ECTS Credit 5			Tutorial Practical
SWL	125		Seminar
Module level	1	Semester of Delivery	1
Module Leader	Ahlam L	. College	Electromechanical
	Shuraiji		Eng. Dept.
Module Lead	ler Assistance	e-mail	Ahlam L. Shuraiji
Academic Title	Prof		@uotechnology.edu.iq
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	
Peer Review	ver -	e-mail	
Name			
Scientific	-	e-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Mo	odules		
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	 The main aims of this course are provide learners with knowledge and an understanding of the 	

	 working principle, and constructional features of transformer and three-phase induction motor. introduce the concept of equivalent electrical circuit for both transformer and induction motor evaluate efficiency of the machines under different load operation conditions.
Module Learning Outcomes	At the end of this course students will demonstrate the ability to
	• Understand the basic construction and working principle of transformer.
	• Mathematically predicted the transformer performance through the equivalent circuit of the transformer.
	• Explain different connection of three-phase winding transformer.
	• Evaluate transformer efficiency at different loading conditions.
	• Understand the basic construction and working principle of three-phase induction motor
	• Understand the concept of synchronous speed, slip, rotor

	 voltage and its frequency Predicate the motor equivalent circuit parameters using open and short circuit tests. Analysis torque equation for different operation states. Understand the power flow in the 3-phase induction motor and predicate the motor efficiency.
Inductive Contents	 1-transforent construction, features operating principle and classification. 2- EMF equation of transformer. 3- equivalent circuit, referring rules, power flow and efficiency of the transformer. 4- three-phase transformer, winding connection methods of three-phase transformer. 5- construction, operating principle of three-phase induction motor. 6- slip and its effect on the rotor circuit parameters, rotor current and power factor equations. 7- equivalent circuit of three-phase induction motor. 8- Torque equation of the motor. 9- losses and efficiency of the motor.

Learning and Teach	ing Strategies
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting
	student active method. The method help the student gett

the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)	63	Structured SWL (h/w)	4.0
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4.13
Total SWL (h/sem)	125		-

Module Eval	uation				
		Time/No.	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative Assessment	Quizzes	1	10%	5	LO # 1 , 2, 3
	Assignments	1	10%	7	LO # 4 , 5
	Projects / Lab.	1	-		LO # 3
	Report	-	10%	-	-
Summative Assessment	Midterm Exam	1.5 hr	20%	9	LO # 1 – 5
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Plan (Weekly Syllabus)		
	Introduction to dynamic.	
Week 1	Single-phase transformers: operating principles and construction.	
Week 2	Equivalent circuit of single-phase transformer	

Week 3	Open and short circuit test of single-phase transformer
Week 4	Losses and efficiency of single-phase transformer
Week 5	Auto transformer construction, working principle and applications
Week 6	three- phase transformers: operating principles and construction
Week 7	Winding connection of three-phase transformer
Week 8	Three-phase induction motor: operating principles and construction
Week 9	Types of induction machines-advantages and disadvantages
Week 10	Mid term exam
	•
Week 11	Equivalent circuit of three-phase induction motor
Week 12	Torque production of three-phase induction motor
Week 13	Three-phase induction motor characteristics
Week 14	Power flow diagram of three-phase induction motor
Week 15	Preparatory week before the final Exam