University of Technology

Electromechanical Engineering Department

Electromechanical Systems Engineering Branch

2023 - 2024

First Cycle,

Bachelor's Degree (B.Sc.) Electromechanical Systems Engineering Program

Appendix 2 Program Catalogue

Table of Contents

- 1- Mission and Vision Statement
- 2- Program Specification
- 3- Program Objectives
- 4- Student Learning Outcomes
- 5- Academic Staff
- 6- Credit, Grading and GPA
- 7- Modules
- 8- Contact

1. Mission and Vision Statement

Vision Statement

Aiming to build an engineering establishment in electromechanical systems field to be outstanding one among the top international university.

Mission Statement

- 1- Prepare our students for successful careers in the energy and renewable energies profession,
- 2- Conduct high quality and innovative research, and
- 3- Serve the community and industry providing educational and research resources.

For future plans, the branch intends to cover all required courses in electromechanical engineering sectors in Iraq, including control, electric machines, applied mechanics, robotics systems. Through the communications with Ministry of industry an oil (symposiums, industrial advisory board meeting), the branch developed his courses according to the needs of the ministries.

2. Program Specification

Program Code	BSc-EREE	ECTS	240
Duration	4 Year, 8 Semesters	Method of Attendance	Full Time

Subject Areas Requirements

The Electromechanical Systems Engineering program produces graduates who are preparedtoenterthepracticeofelectromechanical systems and its application. For two paths, thereare three major components of the program: (1) foundation in the mathematical and physical sciences, (2) engineering topics in both mechanical and electric systems with design applications, and (3) general education in the humanities, Englishcourse and ethics.

Mathematics and PhysicalSciences

The engineering science fundamentals and engineering design skills are built upon the basicmathematicsandphysicalsciences. Themathematicsworkbegins with a three levels course (six sequence differential and integral calculus. The first courses) on two coursesincludetopicsinlimits, derivatives, and the integrals of functions of one variable, work on partial derivatives and multiple integrals is presented. Vector analysis and three-dimensional analytical geometry, solution of the first and second order linear differential equations with numerous applications, Laplace transforms, power series solutions, numerical methods, linear systems and numerical analysis with engineering applications in numerical differentiation andintegration. With this foundation in mathematics, our students have necessary tools for applications in analysis and design.

Physics (two courses) in the first level includes materials science, classification of materials, atomic structure and the type of bonding forces, types of materials and their applications and the mechanical material properties.

It is noted that the number of hours for Math and Basic Science is 30 hours and it's satisfies ICAEE requirement.

EngineeringTopics

Theaimoftheprogramistograduatestudentscapabletoworkasmechanicalandelectrical engineer in electromechanical systems field. The engineering topics are divided into four parts; preliminary joint courses, mechanical courses, electrical courses and final joint courses.

Preliminary joint courses:

- Workshop Training; Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining(lathe, milling, drilling), forging, denting, filings, forging, welding, andcasting.
- Computer Courses; Computer Science (Visual BASIC programs), Advanced Programming (C++), Application of Advance Computer (Microprocessors and MATLABlanguages).
- Industrial Engineering, determine the most effective ways for an organization to use the

basic factors of production.

• EngineeringandMachineDrawingistoteachstudentsmanualdrafting and dimensioning of views, explains the principles of orthographic views, multi view projection and sectional view drawing.

Engineering courses are divided into twoparts;

Mechanical Courses,

- Engineering Mechanics. This unit of study aims to provide theoretical knowledge and principles of Statics andDynamics.
- Strength of Material and Vibration. In this course, students will learn; the behavior of solid bodies under loads and deflections, study the simple bending theory for beams and the simple torsion theory for shafts circular and non-circular, deflection of beams, complex stresses, compounds beam and discussion the principles of free & forced vibrations
- Control System, illustration and discussion the Main Theoretical Principles of control systems and understanding of using different systemDamping.
- Thermodynamics, Fundamental thermodynamic concepts including system, state, state postulate, equilibrium, process and cycle, Heat, work, 1st Law of Thermodynamics, Properties of a substance, Energy balances for idealized closed systems, Energy and mass balances for idealized control volumes, 2ndLaw of Thermodynamics, Carnot cycles, thermal efficiencies, Entropy, isentropic processes, isentropic efficiencies, idealized power cycles (Otto, Diesel and Rankine Cycles).
- FluidMechanics.This courseprovidesaworkingknowledgeofFluidMechanics and Illustration and discussion the principles of Principle of fluid motional flow classification Bernoulli's equation as well as applications of Bernoulli's equation and anther subject in FluidMechanics.
- Heat Transfer; teach theoretical basics of the conduction, convection and radiation heat transfer Coincided with a laboratory experiment.

Electrical Courses,

- Fundamental of Electric Engineering (illustration and discussion the fundamentalfelectricengineeringanddefinition,proceedingtothestudenttheDC Electrical Circuits, series, parallel, series-parallel and identify the equations voltages ¤t for circuitsabove).
- Electric and Electronic Circuits, in electrical engineering, we are often interested in communicatingortransferringenergyfromonepointtoanother. Todothis requires an interconnection of electrical devices. Such interconnection is referred to as an electric circuit.
- Electrical Machines, Illustration and discussion the principles of DC and AC machines, description of the machine, as well as its operation in electrical machines.
- Power systems, Giving Knowledge about the generation, transmission, and distribution typesystems.
- Communication, theoretical and practical experiences in analog and digital communication and AM and FM modulation.

• Power Electronics and Electrical Drives, theoretical and practical experiences in the field of power electronics and electrical drives such as AC to DC converters (Rectifiers), DC to AC converters (invertors), DC to DC converters (DC choppers), AC to AC converters (AC voltage regulator and cycloconverter), speed control of DC motors, and speed control of AC motors (inductions and synchronous motors).

Final Joint Courses,

- Electromechanical Equipment, this course specification provides the main features of the Electromechanical Systems andDevices.
- Computer aided design and computer aided manufacturing.
- Signal processing, this course provides the types of signals and analysis of signals. In addition, the comparative between signals is given as well.

Others Including GeneralEducation

The third major area of the curriculum is the general education component. The University of Technology has a mandated General Education Requirements for all degrees. To satisfy the General Education Requirements the Electrometrical Systems Engineering Program set required courses in the general education component as follows:

- English Language(two levels), this course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.
- Human Rights (second level), Freedom and Democracy, the course covers the concept of human rights and development, definition, classes, properties, and the most important human rights conventions and declarations and international conventions on human rights andhumanrightsinreligionsandtheroleofnon-governmentalorganizationsinthisfield and other human rights issues. The substance of freedom and democracy include the conceptoffreedomandkinds,democracyandthetypesandcomponents,individualliberty and freedom forced to reconcile the sovereignty, freedom, democracy during the Greeks time, lobbyists, the most important theories on the nature of election, the rights of minorities in democratic governance and other topics that make the student familiar with theissues.
- Ethics in Engineering (fourth level), concentrates on professional Ethics.
- Sport (first level), concentrates on different sport activities.

3. Program Goals (objectives)

- 1- Entering the electromechanical systems engineering profession as practicing engineers and consultants with prominent companies and organizations in diverse areas that related to electromechanical systemsengineering.
- 2- Pursuing graduate education and research at major research universities in electromechanical systems engineering, and related fields
- 3- Advance in their chosen fields to supervisory and management positions

- 4- Engage in continued learning through professional development
- 5- Participate in and contribute to professional societies and community services

4. Student (Graduate) Learning Outcomes

Students from the electromechanical systemsprogram will attain (by the time of graduation):

- 1. An ability to identify, formulate, and solve engineering in electromechanical systems engineering problems by applying principles of engineering, science, and mathematics.
- 2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline
- 3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 4. An ability to communicate effectively with a range of audiences
- 5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 6. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge
- 7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment

5. Academic Staff (Faculty)

Faculty Name	Highest Degree Earned- Field and Year	Rank	E-mail
Mohammed Kadhim Edan	PhD. in Elect. Eng. (2017)	Р	50055@uotechnology.edu.iq
Hashim Abed Hussein Hameed	PhD. in Mech. Eng. (2006)	Р	
Jamal Abdul-Kareem Mohammed Abdullah	PhD. in Elect. Eng. (2007)	Р	
Hussein Thani Rishag Tubi Swadi	PhD. in Elect. Eng. (2005)	AST	
Abduljabbar Owaid Hanfesh jarad	PhD. in Elect. Eng. (2009)	AST	
Ahlam Louabi Shreajee	PhD. in Elect. Eng. (2017)	AST	
Manal Kadhim Oudah Hasan	PhD. in Elect. Eng. (2009)	AST	
Israa Saad Ahmed Naseif	PhD. in Mech. Eng. (2017)	AST	
Wisam Essmat Abdul-Lateef	PhD. in Mechatronics Eng. (2017)	AST	
Tariq Mohammad Hammza khalaph	PhD. in Mech. Eng. (2016)	AST	
Adnan Ghareeb Tuaamah Al- Hasnawi	PhD. in Mech. Eng. (2016)	AST	
Abduljabbar Muttair Ahmed Mizban Alsaedi	PhD. in Mech. Eng. (2012)	Ι	
Anees Fadhel Saad Hazam	PhD. in Mech. Eng. (2018)	Ι	
Faten Noaman Abdullah Noaman	PhD. in Mech. Eng. (2019)	Ι	

Murooj Nadhom Mohammed Ali Musa	PhD. in Elect. Eng. (2020)	Ι	
Bassam Ali Ahmed Mohammed Ali	PhD. in Mech. Eng. (2021)	A	
Majida Khaleel Ahmed Mohsen	PhD.Elect. Eng. (2007)	A	
Adel Ridha Othman Ali	MSc. Mech. Eng. (2008)	A	
Najat Shyaa Jasim Mohammed	MSc. Elect. Eng. (2001)	Ι	
Wisam Ali Hassan ALZUHAIRI	MSc. Law (2012)		
Rafah Kareem Mahmood Hasan	MSc. in Computer (2015)	Ι	

6. Credit Grading and GPA

Credits

University of Technology is following the bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structure and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who are failed a course. The grading system is defined as follows:

	Grading Scheme مخطط الدر جات						
Group	Grade	التقدير	Marks (%)	Definition			
Success	A - Excellent	امتياز	90 - 100	Outstanding			
Group	B – very Good	جيد جدا	80 - 89	Above average with some errors			
(50-100)	C - Good	جيد	70 - 79	Sound work with notable Error			
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work with met minimum criteria			
Fail Group	FX – Fail	راسب	45-49	More work required but credit awarded			
$(0-49)^{-1}$		قيد					
		المعالجة					
	F - fail	راسب	0 - 44	Considerable amount of work required			
Notes:							
Marks with d	Marks with decimal places above or below 0.5 will rounded to the higher or lower full mark (for						
example a m	example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54.						
The universit	The university has a policy NOT to condone "near pass fail" so the only adjustment to marks						
awarded by t	he original marker	(s) will be	e the automation	c rounding outlined above.			

Calculation of the Cumulative Grade Point Average (CGPA)

The CGPA is calculated by the summation of each module score multiplied by its ECTS, all are divided by the program total ECTS.

CGPA of a 4 – year B.SC. Degrees:

CGPA = $[91^{st} \text{ module score x ECTS}) + (2^{nd} \text{ module score x ECTS}) + ...]/240$

7. Curriculum/Modules

Semester 1: 30 ECTS: 1 ECTS = 25 hrs

NI			units		Exa	SSWL	USSWL	SWL	ECTS	Мо	
N	Subject	Fi	First term		uni	m	hr/sem	hr/sem	hr/sem		del
0	Subject	Th	Pr	Tut	ts	hr/se					Тур
•		eo.	ac.	•		m					е
1	Computer Sciences I	2	2	-	2	3	63	12	75	3	S
2	Workshop I	-	6	-	3	3	93	7	100	4	B
3	Mathematics I	4	-	-	4	3	63	87	150	6	B
4	Fundamentals of Electrical	2	2	-	3	3	63	62	125	5	С
	DC Circuits										
5	Engineering	2	2		3	3	63	37	100	4	С
	Mechanics (Static)	2	2	-	3						
6	Physics I	4	-	-	4	3	63	87	150	6	B
7	Human Rights	2	-	-	2	3	33	17	50	2	S
							441	309	750	30	

Semester 2: 30 ECTS: 1 ECTS = 25 hrs

			u	nits		Exam	SSWL	USSWL	SWL	ECTS	Μ
Ν		Fi	First term		unit	hr/sem	hr/sem	hr/sem	hr/sem		od
0.	Subject	The	Pra	Tut.	S						el
		0.	c								Ty pe
1	Engineering Mechanics (Dynamic)	2	2	-	3	3	63	37	100	4	C
2	Workshop II	-	6	-	3	3	93	7	100	4	B
3	Mathematics II	4	-	-	4	3	63	87	150	6	B
4	Fundamentals of Electrical AC	2	2	-	3	3	63	62	125	5	C
	Circuits										
5	Fundamentals of Engineering Drawing (Auto CAD)	-	3	-	2	3	48	27	75	3	S
6	Physics II	4	-	-	4	3	63	87	150	6	B
7	English Language I	2	-	-	2	3	33	17	50	2	S
							426	324	750	30	

8. Contact:

Program Manager: Mohammed K Al-Saadi, Prof., PhDin Elec. Eng. (2017)

Appendix 3 Modules Catalogue

Table of Contents

- 1- Overview
- 2- Undergraduate Modules
- 3- Contact
- 1. Overview

This catalogue is about the courses (modules) given by the program of Electromechanical Systems Engineering to gain the Bachelor of Science degree. This program delivers 48 Modules with 6000 total student workload hours and 240 total ECTS. The module deliver is based on the Bologna Process.

2. Undergraduate Courses

First Semester

Module 1

Code	Course/module Title	ECTS	Semester		
WSHE106	Workshop	4	1, 2		
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(hr/sem)	SWL (hr/year)		
-	- / - / 6 / -	-	200		
Description					
Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining(lathe, milling, drilling), forging, denting, filings, forging, welding, andcasting.					

Code	Course/module Title	ECTS	Semester		
COSC108	Computer Science I	3	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)		
1	- /2/-/-	48	27		
Description					
Windows, Computer Science (Visual BASIC programs).					

Code	Course/module Title	ECTS	Semester		
MATH113	Mathematics I	6	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)		
4	-	63	87		
Description					
Themathematicsworkbegins with differential and integral calculus, limits,derivatives,andtheintegralsoffunctionsofonevariable, work on partial derivatives and multiple integrals is presented.					

Module 4

Code	Course/module Title	ECTS	Semester		
FUEE114	Fundamentals of Electrical	5	1		
	Engineering(DC)				
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)		
2	- /2/-/-	63	62		
	Description	on			
In this course, students learn some details of Fundamental of AC and DC circuits and their analysis by using different methods, Firstly, they are taken the atomic structure to understand the concept of current and voltage, then they are given the Kirchhoff's current and voltage laws and how they can employ them to analysis of the AC and DC circuits. Besides, the analysis methods are presented to learn the students the analysis of the AC and DC circuits. In addition, the analysis the AC and DC circuits by network theorems are given.					

Code	Course/module Title	ECTS	Semester			
PHYS115	Physics I	6	1			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)			
4	-	60	90			
	Description					
The aims which can be achieved during teaching this course program are concept of materials science, classification of materials, atomic structure and the type of bonding forces.						

Code	Course/module Title	ECTS	Semester			
SPOR116	Sport	2	1			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)			
2	-	33	17			
Description						
The objectives of this	course is providing formal e	ducation and of encoura	ging pupils' personal			
development in a wide	r social and cultural context	. Formal education invol	lves the acquisition of			
competences knowled	competences knowledge, skills and attitudes across a range of domains. Personal development					
takes place in a variety of spiritual, moral, social and cultural contexts. It involves an awareness						
of appropriate behavior, an understanding of the environment in which pupils live, and a						
development of their individual identity.						

Code	Course/module Title	ECTS	Semester
ENME117	Engineering	4	1
	Mechanic(Dynamic)		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
2	2	63	37
Description			
This unit of study aims to provide theoretical knowledge and principles of static.			

Second semester

Module 1

Code	Course/module Title	ECTS	Semester
WSHE106	Workshop	4	2
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL (hr/sem)	SWL (hr/year)
-	- / - / 6 / -	-	200
Description			
Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining(lathe, milling, drilling), forging, denting, filings, forging, welding, andcasting.			

Module 2

Code	Course/module Title	ECTS	Semester
MATH122	Mathematics II	6	2
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
4	-	63	87
Description			
Vector analysis and three-dimensional analytical geometry are included in this course. Topics include solution of the first and second order linear differential equations with numerous applications.			

Code	Course/module Title	ECTS	Semester
FUEE123	Fundamentals of Electrical	5	2
	Engineering (AC)		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
2	- /2/-/-	63	62
Description			
In this course, students learn some details of Fundamental of AC and DC circuits and their analysis by using different methods, Firstly, they are taken the atomic structure to understand the concept of current and voltage, then they are given the Kirchhoff's current and voltage laws and how they can employ them to analysis of the AC and DC circuits. Besides, the			

analysis methods are presented to learn the students the analysis of the AC and DC circuits. In addition, the analysis the AC and DC circuits by network theorems are given.

Module 4

Code	Course/module Title	ECTS	Semester
FATD124	Fundamentals of	3	2
	AutoCAD tools		
	Drawing		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
-	-/3/-/-	48	27
Description			
Fundamental of Electr	Fundamental of Electric Engineering (illustration and discussion the		
fundamentalfelectricengineeringanddefinition, proceeding to the student the DC Electrical			
Circuits, series, parallel, series-parallel and identify the equations voltages & current for			
circuitsabove).			

Module 5

Code	Course/module Title ECTS		Semester
PHYS125	Physics II	6	2
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
4	-	63	87
Description			
This course considers the types of materials and their applications and the mechanical material properties.			

Code	Course/module Title	ECTS	Semester
ENLA126	English Language I	2	2
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
2	-	33	17
Description			
This course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.			

Code	Course/module Title	ECTS	Semester
ENME127	Engineering Mechanics	4	2
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/w)
2	- /2/-/-	63	37
Description			
This unit of study aims to provide theoretical knowledge and principles of Statics			
andDynamics.			

3. Contact:

Program Manager: Israa Saad Ahmed, Prof, Assist, PhD Mech Eng. 2017 **Program Coordinator:** Murooj N. Mohammed Ali, Lectruer,

Appendix 4 Modules Description Form

First Semester

		Module Informat	ion
Module Title	Workshops		Module Delivery
Module Type	Ba	asic	The□y
Module Code	WSH	HE106	
ECTS		8	🗖 Lab
Credit/year			Tutorial
SWL/year	2	.00	Practical
			Seminar
Module level	1	Semester of	1, 2
		Delivery	
Module Leader	Training and	College	
	Workshops		
	Center		
Module Leader	Prof.Wissam	e-mail	Wissam.h.alawee@uotechnology.edu.iq
Academic Title	H. Alawee		
Module Tutor		Module Leader's	Ph.D.
		Qualification	
Peer Reviewer	Iqbal Alshalal	e-mail	Iqbal.a.alshalal@uotechnology.edu.iq
Name			
Scientific	1/6/2023	e-mail	
Committee			
Approval Date			
		Version Number	1

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents	

Module Aims	1-Preparing applied engineers in the field of engineering sciences who	
	are distinguished by a high level of knowledge and technological	
	creativity, in line with the strict standards adopted globally in quality	
	assurance and academic accreditation of the corresponding engineering	
	programs, while adhering to the ethics of the engineering profession.	
	2. Enable the student to know and understand work systems, risks, and the	
	factors surrounding them.	
	3. Enable the student to know and understand theoretical principles in	
	handicrafts and measurements.	
Module Learning	1- To familiarize the student with the vocabulary of occupational safety and its	
Outcomes	importance in the field of work.	
	2- Acquisition of the student's manual operation skills, for example (Filings and	
	Tinsmith workshops), and mechanical operation skills, for example (Turning).	
	3- Acquisition of the student's mechanical forming skills, for example (Casting	
	and Blacksmithing).	
	4- The student acquires basic engineering skills such as Welding, Carpentry,	
	and Electrical installations that serve him in the professional field.	
	5- Enabling the student to operate the various machines and devices in	
	mechanical operations and formation.	
	5- Cooperative learning by working collectively.	
	5- cooperative learning by working concerivery.	
Inductive Contents		
inductive Contents	1. Interdenting the stard out to the basis of the ent of termine and willing	
	1. Introducing the student to the basics of the art of turning and milling,	
	types of cold working machines, the skill of dealing with them,	
	choosing metals, operational tools, and methods of measurement and	
	standardization	
	2. Introducing the student to the basics of the art of casting, hot forming,	
	metal selection, method of working on casting furnaces and tools, and	
	manufacturing casting molds	
	3. Familiarize students with the basics of cars and the systems they use, as	
	well as maintenance, disassembly, and assembly processes.	
	4. Introducing students to the basics of household and industrial electrical	
	appliances, the skill of using tools, and designing electrical circuits and	
	control panels	
	5. Introducing the student to the basics of the art of plumbing, leveling	
	surfaces, the skill of using tools, manufacturing and installing	
	geometric shapes, and methods of measurement and standardization	
	6. Introducing the student to the basics of the art of blacksmithing, cold	
	and hot forming of metals, the method of hardening them, and the skills	
	of dealing with hand tools, forming machines, and heating furnaces	
	7. Introducing the student to the basics of the art of filing and manual	
	operation of metals with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and the methods of measurement	
	tools, the skills of dealing with them, and the methods of measurement	
	and standardization	

8.	Introducing the student to the basics of the art of welding, the
	installation and assembly of metals, the types of welding machines, the
	skills of dealing with them, the types of welding, and the methods of
	measurement and standardization
9.	Introducing the student to the basics of the art of carpentry and
	woodworking with the help of manual, electrical, and mechanical tools,
	the skills of dealing with them, and methods of measurement and
	standardization

	Learning and Teaching Strategies	
Strategies		

Student Workload (SWL)					
Structured SWL (h/sem)90Structured SWL (h/w)6.00					
Unstructured SWL (h/sem)	10	Unstructured SWL (h/w)	0.66		
Total SWL (h/sem)	200				

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant
			(Marks)		Learning
					Outcome
Formative	Quizzes		20%		
Assessment	Assignments	-			All
	Projects /	Every 3 weeks	60%	continous	
	practice				
	Report	-			
Summative	Midterm	-			
Assessment	Exam				
	Final Exam	Every 3 weeks	20%	continous	All
Total assessment			100%		

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري **Material Covered**

	Welding workshop.
	-Occupational safety and its importance in welding workshops.
Week 1	-Introduction to the basics of welding.
	-Electric arc exercise.
	-An exercise for welding straight lines in a circular motion (helical).
	Welding workshop
Week 2	- An exercise for welding straight lines with a crescent movement and other welding methods
	-Construction welding exercise.
	Welding workshop.
Week 3	-Welding two pieces together.
	-Written exam in practical exercises
	Casting workshop
	-Occupational safety and its importance in plumbing workshops.
Week 4	-Introduction to the basics of metal casting.
	-Simple wooden disc exercise.
	Half workout.
	Casting workshop
Week 5	Wheel exercise.
	Pushing arm exercise.
	Casting workshop.
Week 6	-Complete pulley exercise.
	-Circular pole exercise.
	-Written exam in practical exercises.
	Blacksmith Workshop
	-Occupational safety and its importance in blacksmithing workshops.
Week 7	-Introduction to the Basics of Blacksmithing.
	- Barbell adjustment exercise.
	-Eight-star exercise.

	- Exercise forming the number eight in English.
	-Six formation exercises in English.
Week 8	Blacksmith Workshop -An exercise forming the number five in English. - Exercise forming the number nine in English. An exercise in forming an iron model in the form of a circle
Week 9	 Blacksmith Workshop S-shape exercise. Air hammer hot barbell exercise. Exercise to form a circle on an electric bending machine. Exercising cold and hot ornament formation. A written exam in practical exercises .
Week 10	 Automotive Workshop -Occupational safety and its importance in car maintenance workshops. -An introduction to cars and their basic parts. -Parts of the engine, how it works, types of engines, and methods of classification.
Week 11	Automotive Workshop - Open the engine and identify the parts -Lubrication system -Cooling system.
Week 12	Automotive Workshop -The fuel system. -The old and new ignition circuits. -Written exam in practical exercises.
Week 13	Turning Workshop -Introduction to lathe machines and identifying their parts -Measuring tools and the use of an oven measuring instrument -Circular column lathing exercise on different diameters.

	Turning Workshop
Week 14	-Exercise using the pen (semicircular R) brackets.
	An exercise in making different angles using a pen (square + angle pen 55).
	Turning Workshop
Week 15	- Making shaft with different diameter exercises using (left and right pen)
	- Workout (Tube Connection).
	-Written exam in practical exercises.
	Fitting workshop
Week 16	Occupational safety and its importance in filing workshops
	-An introduction to the basics of filing
	-Pen holder exercise "preparation and preparation
Week 17	Fitting workshop
	Pencil holder exercises finishing and assembling
	Fitting workshop
Week 18	-The catcher exercise.
	- Clamping exercise.
	Written exam in practical exercises.
	Carpentry workshop
	-Occupational safety and its importance in carpentry workshops.
Week 19	- An introduction to carpentry, its types, types of wood, tools used, and preparation Preparing the tools used
	Face modification exercise using the reindeer
Week 20	Carpentry workshop
	Garden fence work and how to connect its parts, the eight-star exercise
Week 21	Carpentry workshop
	- Wood smoothing exercise using smoothing paper

	- Wood dyeing exercise in three stages
	Final smoothing and varnishing exercise
	Written exam in practical exercises
	The tinsmith workshop
	Occupational safety and its importance in plumbing workshops
Week 22	
	An introduction to plumbing, its tools, and plumbing stages
	Planning and marking exercise on metal plates
	The tinsmith workshop
Week 23	Geometric shapes
	Types of individuals and methods of individuals
	Geometric shape individuals exercise on a metal board
	The tinsmith workshop
	Cone members exercise
Week 24	- Exercise of cylinders with an oblique cut
	Roll forming operations
	Connection without the use of an intermediary
	Written exam in practical exercises
	Electric Workshop
	Occupational Safety and its importance in electrical workshops
	An introduction to the basics of electrical installations
Week 25	- Linking a simple circuit consisting of a lamp to the control of a single-way switch.
	Connect two lamps in series with one-way switch control.
	Connecting two lamps in parallel with the control of a single road switch.
	Connect two lights with one-way dual switch control.
Week 26	electric Workshop
Week 20	Connect a fluorescent lamp circuit to a one-way switch control

	Connecting an electric supply socket circuit to the control of a sep switch	arate or combined one-way		
	Written exam in practical exercises			
	electric Workshop			
	Occupational Safety and its importance in blacksmithing workshops			
	Introduction to the basics of Blacksmithing			
Week 27	- Barbell adjustment exercise			
	Eight-star exercise			
	- Exercise forming the number eight in English			
	Exercise forming the number six in English			
	supplementary training curriculum			
Week 28	Welding workshop			
	Casting workshop			
	Blacksmith's workshop			
	supplementary training curriculum			
Week 29	- Automotive workshop			
	- Turning workshop			
	Fitting workshop			
	supplementary training curriculum			
Week 30	- carpentry workshop			
	- The tinsmith workshop			
	Electric workshop			
Learning an	d Teaching Resources			
التعلم والتدريس	مصادر ا			
	Text	Available in the Library?		
Required Te	Workshop technology and measurements, Ahmed Salem Al-Sabbagh.	yes		
Recommen	ded			

Texts	
Websites	

		Module Information	
Module Title	Computer Science I		Module Delivery
Module Type	Sı	ipport	The
Module Code	CO	SC108	Lecture
ECTS Credit		3	Lab
SWL	75		Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Najat Shyaa	College	Electromechanical Eng. Dept.
	Jasim		
Module Leader	Lecturer	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor		Module Leader's	MSc. in Elec. Eng.
		Qualification	50021@ (1 1 1 1)
Peer Reviewer		e-mail	50031@uotechnology.edu.iq
Name			
Scientific		e-mail	
Committee			
Approval Date			
		Version Number	

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module		Semester	

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	In this course, the student will learn how to use software in		
	his work (Visual Basic Language)		
Module Learning Outcomes	In this course, – Computer Science students will learn:		
	1. Computer Hardware (Microprocessor, Memory, Input		
	and Output Devices). Programming Languages,		
	Operating Systems / Types of Files and Directories		

	 Numbers representation (Binary, Decimal, Octal, Hexadecimal) Logic Gates Algorithm and Flow Chart Programming in Visual Basic: a- Introduction to visual basic b- Elements of the Integrated Development Environment (IDE) c- Toolbox (Properties and its Events) d- Built the project by using Toolbox and Properties Window e- Built the project by using Code Module f- Input box and Messages box g- Visual Basic Operators h- Conditional Statements (IF, Select Case) One Dimensional Array Two Dimensional Array Subroutine
Inductive Contents	 I wo Dimensional Array Subroutine In this course for Computer Science, the topics are: Logic Gates
	 Numbers representation (Binary, Decimal, Octal, Hexadecimal) Algorithm & Flow Chart Programming in Visual Basic

Learning and Teaching Strategies			
Strategies The branch use a problem based learning which new and student active			
	method. The method help the student getting the program outcomes.		

Student Workload (SWL)					
Structured SWL (h/sem)48Structured SWL (h/w)4.00					
Unstructured SWL (h/sem)27Unstructured SWL (h/w)2.67					
Total SWL (h/sem) 75					

Module Evaluation						
	Time/No. Weight Week Due Relevant Learning					
			(Marks)		Outcome	
Formative	Quizzes	1	7.5%	5	LO # 1, 2	
Assessment	Assignments	1	7.5%	7	LO # 3, 4	
	Projects /					

	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	10	LO # 1 – 4
Assessment	Exam				
	Final Exam	3 hr	70%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Computer Hardware (processor and memory)
Week 2	Computer Hardware (Input and output devices)
Week 3	Computer Software concepts
Week 4	Binary and decimal number system
Week 5	Octal and Hexadecimal Number System
Week 6	Logic Gates
Week 7	Algorithms
Week 8	Flow Charts
Week 9	Visual Basic Window Components and IDE
Week 10	Visual Basic Projects and Forms
Week 11	Visual Basic Tools
Week 12	Visual Basic Tools
Week 13	Visual Basic Functions
Week 14	Visual Basic Functions
Week 15	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus) المنهاج الإسبوعي للمختبر			
Material Covered			
Week 1 and 2	Windows 7 / operating systems		
Week 3 and 4	Microsoft Word2007		
Week 5 and 6	Microsoft Excel 2007		
Week 7 and 8	Microsoft Power Point 2007		

Week 9 and 10	Visual basic programming
Week 11 and 12	Assignment Statement
Week 13 and 14	Declaration Statement

Learning and Teaching Resources					
	Text	Available in the			
		library			
Required Texts	Basic Principles of Learning Visual Basic				
	Language 2016				
Recommended Texts	Basic Principles of Learning Visual Basic Language C++ 2014				
Websites					

		Module Information		
Module Title	Mathematics I		Module Delivery	
Module Type	В	asic	The	
Module Code	MA	TH113	Lecture	
ECTS Credit		6	🗖 Lab	
SWL	-	150	Tutorial	
			Practical	
			Seminar	
Module level	1	Semester of	1	
		Delivery		
Module Leader	Israa Saad	College	Electromechanical Eng. Dept.	
	Ahmed			
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq	
Academic Title	Assistance			
Module Tutor		Module Leader's	PhD. Mech. Eng.	
		Qualification	C	
Peer Reviewer		e-mail	Israa.S.Ahmed@uotechnology.edu.iq	
Name				
Scientific		e-mail		
Committee				
Approval Date				
		Version Number		

Relation with other Modules				
Prerequisite Module		Semester		
Co-requisite Module Semester				

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	The student will learn the first part of mathematics	
Module Learning Outcomes	In this course, for students will learn	

	 Introduction, Quadratic Formula, Binomial Formula Function (Inverse Hyperbolic Function). Limits &Continuity. Matrices (Operation, inverse of Square Matrix, Eigen values & Eigen Vectors). Volumes (Volumes by slicing, Disk Around x-axis, Washer Around x-axis, washer around y-axis). Functions (Inequality, Intervals, Domain & Range) Determinants (Properties, Grammer's Rule, Applications) Functions (Trigonometric Functions, Inverse Trigonometric Functions, Logarithmic Function)
Inductive Contents	 In this course, students will learn: Introduction, Quadratic Formula, Binomial Formula Straight Line, Conic Sections (Circle, Parabola, Ellipse, Hyperbola) Functions (Inequality, Intervals, Domain & Range) Functions (Inverse Functions, Drawing Function, Absolute Value) Functions (Trigonometric Functions, Inverse Trigonometric Functions, Logarithmic Function) Function (Natural Logarithmic Function, Exponential Function, Hyperbolic Functions) Functions (Inverse Hyperbolic Functions) Limits & Continuity Determinants (Properties, Grammer's Rule, Applications) Matrices (Operations, Inverse of Square Matrix, Eigen Values & Eigen Vectors) Polar Coordinates Complex Numbers Applications of Complex Numbers Vectors in Free Space Applications of Vectors.

	Learning and Teaching Strategies
Strategies The branch use a problem based learning which new and student active	
	method. The method help the student getting the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)	63	Structured SWL (h/w)	4.00

Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.80
Total SWL (h/sem)	150		

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	7.5%	5	LO # 1 , 2, 3
Assessment	Assignments	1	7.5%	7	LO # 4 , 5
	Projects /				
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	10	LO # 1 - 6
Assessment	Exam				
	Final Exam	3 hr	70%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Introduction, quadratic formula, binomial formula
	Straight line, conic section (circle, parabola,
	Inequality, intervals, domain & range, Inverse function
Week 2	Drawing function, Absolute value, Trigonometric function
	Inverse trigonometric function
Week 3	logarithmic function, natural logarithmic function, Exponential function
Week 4	Hyperbolic functions
	Inverse hyperbolic function
Week 5	Limits and continuity
Week 6	Matrices & Determinants, properties, Grammers Rule
Week 7	Applications, Matrices (operations)
Week 8	Inverse of Square matrix
Week 9	Eigen values & Eigen vectors
Week 10	Mid-term Exam
Week 11	polar coordinates
Week 12	Complex Numbers, Applications of complex number
Week 13	Vectors
Week 14	properties of vectors
Week 15	vectors in free space, Applications of vectors
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources	
	Text	Available in the library
Required Texts	Thomas Calculus, George B. Thomas et al, 12 th , edition, 2010, USA	YES
Recommended Texts		
Websites		

]	Module Information	
Module Title	Fundamentals of Electrical Engineering(DC)		Module Delivery
Module Type	(Core	The y
Module Code	FU	EE114	Lecture
ECTS Credit		5	📕 Lab
SWL		125	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Mohammed Kadhim Edan	College	Electromechanical Eng. Dept.
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor		Module Leader's	PhD. Elect. Eng.
		Qualification	
Peer Reviewer		e-mail	50055@uotechnology.edu.iq
Name			
Scientific		e-mail	
Committee			
Approval Date			
		Version Number	

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module		Semester	

М	odule Aims, Learning Outcomes and Inductive Contents
Module Aims	In this course, students learn some details of Fundamental of AC and DC
	circuits and their analysis by using different methods, Firstly, they are
	taken the atomic structure to understand the concept of current and
	voltage, then they are given the Kirchhoff's current and voltage laws and
	how they can employ them to analysis of the AC and DC circuits.

	Besides, the analysis methods are presented to learn the students the analysis of the AC and DC circuits. In addition, the analysis the AC and DC circuits by network theorems are given.
Module Learning	In this course, the students will learn:
Outcomes	1) Analysis of DC circuits by using Kirchhoff's current and voltage laws
	2) Analysis of DC circuits by using analysis methods
	3) Analysis of DC circuits by using network theorem
	4) Fundamental of AC circuits
	5) Analysis of AC circuits by using Kirchhoff's current and voltage
	laws
	6) Analysis of AC circuits by using analysis methods
	7) Analysis of AC circuits by using network theorem
Inductive Contents	In this course, these topics will be presented to the students during
	weekly lecture
	DC electrical circuit
	Analysis methods of DC circuits
	Network theorems of DC circuit
	Sinusoidal alternating wave
	Complex number
	• AC circuits
	Methods of AC circuits analysis
	Network theorems of AC circuits

Learning and Teaching Strategies				
Strategies	The branch use a problem based learning which new and student active			
	method. The method helps the student getting the program outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)	63	Structured SWL (h/w)	5.0		
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	5.0		
Total SWL (h/sem)	125				

Module Evaluation							
		Time/No.	Weight	Week Due	Relevant Learning		
			(Marks)		Outcome		
Formative	Quizzes	1	7.5%	5	LO # 1, 2		
Assessment	Assignments	1	7.5%	7	LO # 3, 4		
	Projects /	1	10%	14	LO # 5		

			Lab.					
			Report					
	Summative		Midterm	1.5 hr	15%	10	LO # 1 – 5	
	Assessment		Exam					
			Final Exam	3 hr	60%	17	All	
	Total a	assessme			100%			
Delivery Plan (Weekly Syllabus)								
المنهاج الاسبوعي النظري								
		Materia	al Covered					
We	ek 1	Introduction - Ohm's law, power, energy, efficiency.						
		Resistar	nces in series . vo	oltage source ir	series .KVL .ba	tteries, pola	rity & drop voltages.	
We	ek 2		,		,,,,,	, .		
We	ek 3	voltage divider rule ,voltage relation(relative potential ,voltage description with one & tow points) .						
We	ek 4	Internal resistance of voltage source ,voltage regulation .						
		DC parallel circuits.						
We	ek 5	Resistance in parallel, parallel network.						
\ N /c	ek 6							
vve	еко	KCL, cur	rrent divider rule	e, open & short	circuit.			
We	ek 7	Series- parallel circuits.Series- parallel network KS, Ladder networks.						
Ma	ek 8	Current Sources : A source conversion, dependent & independent source, current source in series,						
vvc	CKO	current	source in paralle	el.				
We	ek 9	Analysis Method : Brunch current method, loop current method (mesh).						
		Analysis Method . Brunch current method, loop current method (mesh).						
We	ek 10	Nodal voltage method.						
We	ek 11	Bridges method.						
We	ek 12	Delta-Star transformation and Star-Delta transformation.						
We	ek 13	Network Theorems : Super position theorem.						
We	ek 14	Thevinin'stheorem.						

Week 15	Norton's theorem.
Week 16	Preparatory week before the final Exam

	Delivery Plan (weekly lab. Syllabus)
	Materials Covered
Week	Ohm's Law
1 and 2	
Week 3	Kirchhoff's Law
and4	
Week 5	Delta/star+ transformation
and 6	
Week 7	The Thevenin's theorem
and 8	
Week	Super position theorem
9and 10	
Week 11	Induction and capacitive Reactance
and 12	
Week 12	oscilloscope
and 13	

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	Robert L. Boylestad, Introductory Circuit			
	Analysis, Charles E. Merrill Publishing			
	Company, 1977			
Recommended Texts	U. A. Bakshi and V. U. Bakshi, Basic Electrical			
	Engineering, Technical Publications Pune, 2008			
Websites				

	Module Information	
Module Title	Physics I	Module Delivery
Module Type	Basic	The
Module Code	PHYS115	Lecture
ECTS Credit	6	🔲 Lab

CIVI		150	
SWL	150		Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Faten Noaman Abdullah Noaman	College	Electromechanical Eng. Dept.
Module Leader Academic Title	Lucturere	e-mail	eme@uotechnology.edu.iq
Module Tutor		Module Leader's Qualification	PhD. in Mech. Eng.
Peer Reviewer Name		e-mail	50241@uotechnology.edu.iq
Scientific		e-mail	
Committee			
Approval Date			
		Version Number	

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module		Semester	

Module Air	ms, Learning Outcomes and Inductive Contents			
Module Aims	In this course, students learn the principles of semiconductor materials. The doping of semiconductor, using it in P-N junction and its applications in different types of diodes, transistors, and solar cells.			
Module Learning Outcomes	 In this course, students will learn: Study the general classification of engineering materials according to energy bands theory. Realization the principles, properties, and electrical conduction especially in semiconductors. Concept of intrinsic and extrinsic semiconductors. Operation principle and models of p-n junction. Realization the principles of some semiconductors devices as transistor and solar cells. 			
Inductive Contents	 Electronics physics Magnetic properties. Thermal properties. Logic circuits 			

Learning and Teaching Strategies			
Strategies The branch use a problem based learning which new and student			
active method. The method help the student getting the program			
	outcomes.		

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)87Ui		Unstructured SWL (h/w)	6.0	
Total SWL (h/sem)150				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	7.5%	5	LO # 1, 2
Assessment	Assignments	1	7.5%	7	LO # 3, 4
	Projects /				
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	10	LO # 1 - 4
Assessment	Exam				
	Final Exam	3 hr	70%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)		
	Materials Covered		
Week 1	Introduction to materials science and engineering		
Week 2	Classification of Materials, Metals, Polymers		
Week 3	Ceramics, Composites, Advanced Materials		
Week 4	Nano-materials, Biomaterials, Smart materials		

Week 5	Semiconductors, Concepts of nanostructures, Modern Materials' Needs
Week 6	Atomic Structure and Interatomic Bonding
Week 7	Atomic structure, Atomic bonding in solid
Week 8	Types and applications of materials, Types of metal alloys, Ferrous alloys,
	Nonferrous alloys
Week 9	Types of ceramics, Types of polymers, Types of conductors and semiconductors,
	Types of composite
Week 10	Mid-term Exam
Week 11	Mechanical properties, Elastic deformation
Week 12	Mechanical behavior of materials, Hardness and other mechanical properties.
Week 13	Principles of energy and work, What is the energy?
Week 14	Forms of energy, General equation of work,
Week 15	Renewable energies
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Text				
Required Texts	S. M. Sze, "Physics of Semiconductor				
	Devices," third edition				
Recommended Texts	Thomas L. Floyd, "Electronic Devices,"9th				
	Ed., P.CM, 2012				
Websites					

Module Information						
Module Title			Sports	Module Delivery		
Module Type			Support	Theory		
Module Code			SPOR116	□ Lecture □ Lab		
ECTS Credits			2			
SWL (hr/sem)			50	□ Practical □ Seminar		
Module Level		1 Semester of Deli		Delivery	1	

Administering Department		EMEN	College	EME
Module Leader Muaid Waleed		d	e-mail	
Module Leader's Acad. Title		Prof. Assistance	Module Le	eader's Qualification MSc
Module Tutor Name (if available)		e-mail	E-mail	
Peer Reviewer Name		Name	e-mail	E-mail
Scientific Committee Approval Date			Version N	umber

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Mo	Module Aims, Learning Outcomes and Indicative Contents				
Module Objectives	The objectives of this course is providing formal education and of encouraging pupils' personal development in a wider social and cultural context. Formal education involves the acquisition of competences knowledge, skills and attitudes across a range of domains. Personal development takes place in a variety of spiritual, moral, social and cultural contexts. It involves an awareness of appropriate behavior, an understanding of the environment in which pupils live, and a development of their individual identity.				
Module Learning					
Outcomes	 A. Knowledge and Understanding A1. Enabling student to get the knowledge and understanding of the theoretical principles of sport. A2. This knowledge includes an in-depth understanding of the skills, tactics and strategies required for effective training, practices and game-day decisions. A3. Helping the students for achieving a physical fitness Improvement, sports skills Acquisition and mental abilities Improvement. 				
Indicative Contents	 to offer a variety of sports activities including traditional sports, outdoor sports, fitness, lifetime sports, etc., visits to out of school institutions, to offer a variety of training methods to enhance physical fitness components 				

using circuit training, video and ICT tools for movement analysis, observation
sheets, etc.
3. to promote the use of self-evaluation sheets, tests, competitions,
demonstrations, video analysis, etc.,
4. to provide knowledge of the organization of an element of a lesson/a
competition/ a tournament; to create awareness of the student's role as a team
player, coach, referee, assistant, journalist, observer, etc.,
5. to encourage participation with fair play: respecting others, the rules,
materials and equipment, cooperating with others, working for a common goal
and supporting the teacher,
6. to offer different topics to link theory and practice, being presented by the
students as small projects in class.
1 J

Learning and Teaching Strategies				
Strategies	 The learning/ teaching of the sport complementary course develops individual and group needs. It is based on the following didactic principles: acquiring new motor skills and further developing motor skills learned before, using a variety of approaches and teaching methods, focusing on students' varied learning styles and pace of learning, using differentiation in order to meet students' individual needs, focusing on students' abilities to apply skills, tactics and creative ideas, reinforcing social skills, promoting student's autonomy through teaching and learning, improving students' performance by feedback, evaluation and self-evaluation, linking and integrating practical and theoretical components, using a range of teaching and learning resources including ICT. 			

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2					
Unstructured SWL (h/sem)	17	Unstructured SWL (h/w)	2.8		
Total SWL (h/sem)	100				

Module Evaluation					
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #10, #11
	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7
	Projects / Lab.	1	10% (10)	Continuou s	All
	Report	1	10% (10)	13	LO #5, #8 and #10
Summative assessment	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
	Final Exam	3hr	50% (50)	16	All
Total assessm	nent	1	100% (100 Marks)		

Delivery Plan (Weekly Syllabus)

	Material Covered
Week 1	Sports - concept, benefits and types
Week 2	Fitness - the concept and elements of fitness
Week 3	Football - concept + history,
Week 4	Football - basic soccer skills
Week 5	Football Law - Article 1, 2
Week 6	Football Law - Articles 3, 4, 5
Week 7	Basketball - concept + history
Week 8	Basketball - basic basketball skills
Week 9	Volleyball concept and skills
Week 10	Anatomy, The skeleton, Circulatory system
Week 11	Muscular system - concept + muscle, injuries
Week 12	Sport and Circulatory System
Week 13	Scouting - concept + stages + scouting law
Week 14	Biorhythm - concept + benefits + historical overview
Week 15	Biorhythm cycles
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Available in the Library			
Required	Volleyball (history- skills - plans - match management and	no		
Texts	training). Sports Series / Fundamentals of the Football Game. Sports training and future prospects.			

	Applications in scout education.			
	Student strategies and methods of sports training.			
	Football rules.			
Recommende				
d Texts				
Websites	https://www.s2s.net/home.php?P_hirek_azonosito=201			
	https://www.google.com/search?rlz=1C1GCEA_enIQ933IQ934&q			
	https://ar.wikipedia.org/wiki/%D8%AA%D8%AF%D8%B1%D9%8A%D8%A8			
	https://www.7uah.com/search/label/%D8%A7%D9%84%D8%AA%D8%AF%D8%B1%D9			
	$\underline{\%8A\%D8\%A8\%20\%D8\%A7\%D9\%84\%D8\%B1\%D9\%8A\%D8\%A7\%D8\%B6\%D9\%8A}$			

Grade	Marks %	Definition
A - Excellent	90 - 100	Outstanding Performance
B - Very Good	80 - 89	Above average with some errors
C - Good	70 - 79	Sound work with notable errors
D - Satisfactory	60 - 69	Fair but with major shortcomings
E - Sufficient	50 - 59	Work meets minimum criteria
FX – Fail	(45-49)	More work required but credit awarded
F – Fail	(0-44)	Considerable amount of work required
	GradeA - ExcellentB - Very GoodC - GoodD - SatisfactoryE - SufficientFX - Fail	% A - Excellent 90 - 100 B - Very 80 - 89 Good 70 - 79 D - 60 - 69 Satisfactory 50 - 59 FX - Fail (45-49)

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information					
Module Title	Engineering Mechanics (static)		Module Delivery		
Module Type	(Core	The		
Module Code	EN	ME127			
ECTS Credit		4	🔳 Lab		
SWL		100	Tutorial		
			Practical		
			□ Seminar		
Module level	1	Semester of	1		
		Delivery			
Module Leader	Anees Fadhel	College	Electromechanical Eng. Dept.		
	Saad Hazam				
Module Leader	Lecturer	e-mail	eme@uotechnology.edu.iq		
Academic Title					
Module Tutor		Module Leader's	PhD. in Mech. Eng.		
		Qualification	C C		
Peer Reviewer		e-mail	anees.f.saad@uotechnology.edu.iq		
Name					
Scientific		e-mail			
Committee					
Approval Date					
		Version Number			

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module		Semester	

Module Aims, Learning Outcomes and Inductive Contents

Module Aims Module Learning Outcomes	 In this course, students learn how to apply the basic principles from physics and mechanics to analysis and solve the forces, moment and couples problems. In this course, students learn how to apply the basic principles from physics and mechanics to analysis and solve the forces, moment and couples problems in three-dimensional (3D). In this course, students will learn: 1. Fundamentals of Engineering Mechanics 2. How to analyze the forces and moment in mechanisms 3. Calculate the Resultant in two dimensional force systems 4. Fundamentals of Engineering Mechanics(3D) 5. How to analyze the forces and moment in mechanisms(3D) 6. Calculate the Resultant in three-dimensional force
	systems7. Introduction to dynamic
Inductive Contents	 In this course, for engineering mechanics students will learn: Introduction to Statics Scalar quantity, vector quantity, standers units Two-dimensional force systems, rectangular components Moment, principle of moment, couple, couple-force system Resultants Three-dimensional force system, component forces for three dimensions Moment in three-dimensional force system, dot product, couple in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Moment in three-dimensional force system, dot product, couple in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Moment in three-dimensional force system, dot product, couple in three-dimensional force system, couple-force system in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Moment in three-dimensional force system, dot product, couple in three-dimensional force system, couple-force system in three-dimensional force system Moment in three-dimensional force system, dot product, couple in three-dimensional force system Moment in three-dimensional force systems Equilibrium, free body diagram Types of friction, type's friction problems Introduction to dynamic Velocity, acceleration & motion laws

Learning and Teaching Strategies				
StrategiesThe branch use a problem based learning which new and student				
active method. The method help the student getting the program				
	outcomes.			

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)5.00				
Unstructured SWL (h/sem)	37	Unstructured SWL (h/w)	5.00	
Total SWL (h/sem)100				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	7.5%	5	LO # 1 , 2, 3
Assessment	Assignments	1	7.5%	7	LO # 4 , 5
	Projects /	1	10%		LO # 3
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	9	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	60%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)		
	Materials Covered		
Week 1	Introduction to static		
Week 2	Two-dimensional force systems, rectangular components		
Week 3	Resultants		
Week 4	Moment in three-dimensional force system, dot product, couple in three- dimensional force system		
Week 5	Equilibrium, free body diagram		
Week 6	Types of friction, types friction problem		

Week 7	Composite bodies & figures: approximations
Week 8	Resultant in three –dimensional force systems.
Week 9	Mid-term Exam
Week 10	Introduction to dynamic
Week 11	Velocity, acceleration & motion laws
Week 12	Projectile motion
Week 13	Plane curvilinear motion
Week 14	Kinetics of particles, work power, Efficiency, principle of work
Week 15	Impulse & momentum
Week 16	Preparatory week before the final Exam

	Delivery Plan (weekly lab. Syllabus)
	Materials Covered
Week	The determination of the resultant of two forces (or more)
1and2	
Week 3	The determination of friction coefficient between two surfaces
and 4	
Week and	Centroids and center of gravity
5	
Week 6	Center of gravity of the composite areas
and 7	
Week 8	The investigation of Hook's law using helical spring
and 9	
Week 10	The fundamental law of rotation
and 11	
Week 12	The law of energy conservation
and 13	

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	Engineering Mechanics Statics, J. L. Meriam			
	and L.G. Kraige, John Wiley & Sons, 2013.			
Recommended Texts	R. C. Hibbeler, "Engineering Mechanics: Statics			
	& Dynamics", 14th ed. Pearson Prentice Hall.			
Websites				

Second Semester

	Module Information معلومات المادة الدراسية					
Module Title		Workshops II		Modu	le Delivery	
Module Type		Support			□Theory	
Module Code		WOSH121			□ Lecture □ Lab	
ECTS Credits		4			☐ Tutorial ⊠ Practical	
SWL (hr/sem)		100		□ Seminar		
Module Level	1		Semester o	r of Delivery 2		2
Administering De	partment	EMEN	College	EME		
Module Leader	Training and W	orkshops Center	e-mail	twc @u	otechnology.edu	ı.iq
Module Leader's	Acad. Title	Assist. Lect.	Module Lea	nder's Qu	alification	MSc
Module Tutor	-		e-mail	-		
Peer Reviewer Name -		e-mail	-			
Scientific Committee Approval Date07/06/2023		Version Nu	mber	1.0		

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	-	Semester	-		
Co-requisites module	-	Semester	-		

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives أهداف المادة الدر اسية	 1-Preparing applied engineers in the field of engineering sciences who are distinguished by a high level of knowledge and technological creativity, in line with the strict standards adopted globally in quality assurance and academic accreditation of the corresponding engineering programs, while adhering to the ethics of the engineering profession. 2. Enable the student to know and understand work systems, risks, and the factors 			
	3. Enable the student to know and understand work systems, risks, and the factors surrounding them.3. Enable the student to know and understand theoretical principles in handicrafts and measurements			
	1- To familiarize the student with the vocabulary of occupational safety and its importance in the field of work.			
Module Learning Outcomes	2- Acquisition of the student's manual operation skills, for example (Filings and Tinsmith workshops), and mechanical operation skills, for example (Turning).			
 3- Acquisition of the student's mechanical forming skills, for example (Casting Blacksmithing). 4- The student acquires basic engineering skills such as Welding, Carpentry, an Electrical installations that serve him in the professional field. 				
	5- Enabling the student to operate the various machines and devices in mechanical			

	operations and formation.
	5- Cooperative learning by working collectively.
	 10. Introducing the student to the basics of the art of turning and milling, types of cold working machines, the skill of dealing with them, choosing metals, operational tools, and methods of measurement and standardization 11. Introducing the student to the basics of the art of casting, hot forming, metal selection, method of working on casting furnaces and tools, and manufacturing casting molds 12. Familiarize students with the basics of cars and the systems they use, as well
	 as maintenance, disassembly, and assembly processes. 13. Introducing students to the basics of household and industrial electrical appliances, the skill of using tools, and designing electrical circuits and control panels
Indicative Contents	14. Introducing the student to the basics of the art of plumbing, leveling surfaces, the skill of using tools, manufacturing and installing geometric shapes, and methods of measurement and standardization
المحتويات الإر شادية	15. Introducing the student to the basics of the art of blacksmithing, cold and hot forming of metals, the method of hardening them, and the skills of dealing with hand tools, forming machines, and heating furnaces
	16. Introducing the student to the basics of the art of filing and manual operation of metals with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and the methods of measurement and standardization
	17. Introducing the student to the basics of the art of welding, the installation and assembly of metals, the types of welding machines, the skills of dealing with them, the types of welding, and the methods of measurement and standardization
	18. Introducing the student to the basics of the art of carpentry and woodworking with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and methods of measurement and standardization.

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
Strategies	This course aims to promote a set of learning strategies, including the strategy of			

1	learning by lecture, modeling and cooperative learning

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) 90 Structured SWL (h/w) 6 الحمل الدر اسي المنتظم للطالب أسبوعيا الحمل الدر اسي المنتظم للطالب خلال الفصل 6				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	10	Unstructured SWL (h/w) 10 الحمل الدر اسي غير المنتظم للطالب أسبو عيا		
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	100			

	Module Evaluation					
	تقبيم المادة الدر اسية					
Time/Number Weight (Marks) Week Due Relevant Learning Outcome					-	
	Quizzes					
Formative	Assignments	Every 3 weeks	60% 0)		All	
assessment	Projects / Lab.					
	Report					
Summative	Midterm Exam					
assessment	Final Exam	Week 16	40% (40)	16	All	
Total assessment			100% (100 Marks)			

Grading Scheme					
مخطط الدرجات					
Group	Grade	التقدير	Marks %	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(00 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module 2	2
----------	---

		Module Information	
Module Title	Mathematics II		Module Delivery
Module Type	В	asic	The
Module Code	MA	TH122	Lecture
ECTS Credit		6	🔲 Lab
SWL	-	150	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	2
Module Leader	Israa Saad Ahmed Naseif	College	Electromechanical Eng. Dept.
Module Leader	Prof.	e-mail	eme@uotechnology.edu.iq
Academic Title	Assistance		
Module Tutor		Module Leader's	PhD. Mech. Eng.

	Qualification	
Peer Reviewer	e-mail	Israa.S.Ahmed@uotechnology.edu.iq
Name		
Scientific	e-mail	
Committee		
Approval Date		
	Version Number	

Relation with other Modules					
Prerequisite Module Semester					
Co-requisite Module Semester					

Module Air	ns, Learning Outcomes and Inductive Contents	
Module Aims	The students will learn the second part of the basic math	
Module Learning Outcomes	 In this course, for students will learn 1. Differentiation (Derivative Definition, Techniques of Derivative, Applications) 2. Differentiation (Parametric Equations, Implicit Differentiation) 3. Integration (Definite Integrals, Properties, Relation Between Indefinite & definite Integrals) 4. Integration (Partial Fractions For 2nd Equation Degree in Denominator) 5. Integration of (Irrational Functions, Rational Functions 6. Applications of Definite Integral(Area, Area Under the Curve, 7. Area between Curve and y-axis, Area Between Two Curves) 8. Differential Equations D.E. 1st degree equation: (5- Exact, 6- Bernoulli's Equations) 	
Inductive Contents	 In this course, students will learn: Differentiation (Derivative Definition, Techniques of Derivative, Applications) Differentiation (Derivative of Trigonometric Functions, Derivative of Inverse Trigonometric Functions, Chain Rule,) Differentiation (Parametric Equations, Implicit Differentiation) Differentiation (Derivative of Some Functions, Derivative of Hyperbolic Functions, Derivative of Inverse Hyperbolic Functions) 	

• Internation (Indefinite Internale & Substitution Dule)
• Integration (Indefinite Integrals & Substitution Rule)
• Integration (Definite Integrals, Properties, Relation
Between
• Indefinite & definite Integrals)
• Forms of Integration (Substitution Methods, By Part, By
Tabular)
• Integration (Partial Fractions For 2nd Equation Degree
in
• Denominator)
• Integration (Product between Trigonometric Functions,
Product
Between Hyperbolic Functions)
• Integration (Simple Square Root, Trigonometric
Substitutions,
• Hyperbolic Substitutions)
• Integration of (Irrational Functions, Rational Functions)
• Applications of Definite Integral(Area, Area Under the
Curve,
• Area between Curve and y-axis, Area Between Two
Curves)
• Differential Equations D.E, 1st degree equation:
• (1-Direct Integration , 2-Variable Separable)
 Differential Equations D.E. 1st degree equation:
 G- Homogeneous, 4- Linear Equations)
• Differential Equations D.E. 1st degree equation:
• (5- Exact, 6- Bernoulli's Equations)

Learning and Teaching Strategies				
Strategies	The branch use a problem based learning which new and student active			
method. The method help the student getting the program outcomes.				

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.0					
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	6		
Total SWL (h/sem)150					

Module Evaluation						
Time/No. Weight Week Due Relevant Learning						
	(Marks) Outcome					
Formative Quizzes 1 7.5% 5 LO # 1, 2, 3						

Assessment	Assignments	1	7.5%	7	LO # 4, 5, 6
	Projects /				
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	9	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	70%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Differentiation
	Derivative by definition
	Techniques of differentiation
	Applications
Week 2	Derivative of trigonometric functions
	Derivative of inverse trigonometric functions
	Chain rule
	Parametric equation
Week 3	Implicit differentiation
	Derivative of some functions
	Derivative of hyperbolic functions
	Derivative of inverse of hyperbolic functions
Week 4	Integration : 2-1 Indefinite of integral
	Definite of integral
	Properties
Week 5	Relation between indefinite& definite integral
	Forms of integration
	Substitution
	By parts
Week 6	By tabulate
	By partial fractions
	For 2 nd equation degree in denominator
	Product between trigonometric functions
	Product between hyperbolic functions
Week 7	Simple square root
	Trigonometric substitutions
	Hyperbolic substitutions
Week 8	Integration of irrational functions
	Integration of rational function
W 1.0	Applications of definite integral
Week 9	Mid-term Exam
Week 10	Areas

	Area under the curve
	Area between curve and y- axis : 2-4-3 area between two curves
	Area in polar co-ordinates
Week 11	Volumes by slicing
	Disks around x-axis
Week 12	Disks around y-axis
	Volume in polar co-ordinate
Week 13	1 st of D.E
	Introduction
Week 14	Formation of differential equation
	Solution of differential equation
Week 15	Method-1-by direct integration
	Method -2- by separating the variables
	Method -3- homogeneous equation
	Method -4- linear equation, use of integrating factor
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
Text Avai					
	library				
Required Texts	Thomas Calculus, George B. Thomas et al, 12 th ,	YES			
	edition, 2010, USA.				
Recommended Texts					
Websites					

Module Information معلومات المادة الدر اسية					
Module Title	Fundamental of Electrical Engineering (AC)	Module Delivery			
Module Type	Core	🛛 Theory			
Module Code	FUEE123	□ Lecture ⊠ Lab			
ECTS Credits	5	⊠ Tutorial □ Practical			
SWL (hr/sem)	125				

Module Level	el 1		Semester of Delivery		2	
Administering Department		EMEN	College	llege EME		
Module Leader	Fatin Nabeel	Abdullah	e-mail	50060@uotechnology.edu.iq		
Module Leader's Acad. Title Assist. Professor		Module Leader's Qualification MSc.			MSc.	
Module Tutor	-		e-mail	-		
Peer Reviewer Name -		-	e-mail	-		
Scientific Committee Approval 07/06/20		07/06/2023	Version Nu	mber	1.0	

	Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	-	Semester	-		
Co-requisites module	-	Semester	-		

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives 1. To develop problem solving skills and understanding of circuit theory through the application of techniques. 2. To understand voltage, current and power from a given circuit. 3. This course deals with the basic concept of electrical circuits. 4. This is the basic subject for all electrical circuits. 5. To understand Kirchhoff's current and voltage Laws problems.				

Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks. Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks. I. Recognize how electricity works in electrical circuits. 2. List the various terms associated with electrical circuits. 3. Summarize what is meant by a basic electric circuit. 4. Discuss the reaction and involvement of atoms in electric circuits. 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the metwork theorem of Thevenin's and Norton's. 11. Identify the network theorem of Thevenin's and Norton's. Indicative contents average circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems f		6. To perform mesh and Nodal analysis.		
Module Learning Outcomes1. Recognize how electricity works in electrical circuits. 2. List the various terms associated with electrical circuits. 3. Summarize what is meant by a basic electric circuit. 4. Discuss the reaction and involvement of atoms in electric circuits. 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsIndicative content includes the following. A-C circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :		o. To perform mesh and would analysis.		
Module Learning Outcomes1. Recognize how electricity works in electrical circuits. 2. List the various terms associated with electrical circuits. 3. Summarize what is meant by a basic electric circuit. 4. Discuss the reaction and involvement of atoms in electric circuits. 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsIndicative content includes the following. A-C circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :				
Module Learning Outcomes1. Recognize how electricity works in electrical circuits. 2. List the various terms associated with electrical circuits. 3. Summarize what is meant by a basic electric circuit. 4. Discuss the reaction and involvement of atoms in electric circuits. 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsIndicative content includes the following.A-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :		Important: Write at least 6 Learning Outcomes, better to be equal to the		
Module Learning Outcomes2. List the various terms associated with electrical circuits.3. Summarize what is meant by a basic electric circuit.4. Discuss the reaction and involvement of atoms in electric circuits.5. Describe electrical power, charge, and current.6. Define Ohm's law.7. Identify the basic circuit elements and their applications.8. Discuss the various properties of resistors, capacitors, and inductors.9. Explain the two Kirchoff's laws used in circuit analysis.10. Identify the method of analysis (Mesh & Nodal) method.11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsAcc series circuit, impedance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :		number of study weeks.		
Module Learning Outcomes2. List the various terms associated with electrical circuits.3. Summarize what is meant by a basic electric circuit.4. Discuss the reaction and involvement of atoms in electric circuits.5. Describe electrical power, charge, and current.6. Define Ohm's law.7. Identify the basic circuit elements and their applications.8. Discuss the various properties of resistors, capacitors, and inductors.9. Explain the two Kirchoff's laws used in circuit analysis.10. Identify the method of analysis (Mesh & Nodal) method.11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsAcc series circuit, impedance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :		1 Decembra how electricity works in electrical sizewite		
Nooule Learning Outcomes3. Summarize what is meant by a basic electric circuit. 4. Discuss the reaction and involvement of atoms in electric circuits. 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative ContentsA-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :				
Outcomes4. Discuss the reaction and involvement of atoms in electric circuits.5. Describe electrical power, charge, and current.5. Describe electrical power, charge, and current.6. Define Ohm's law.7. Identify the basic circuit elements and their applications.8. Discuss the various properties of resistors, capacitors, and inductors.9. Explain the two Kirchoff's laws used in circuit analysis.10. Identify the method of analysis (Mesh & Nodal) method.11. Identify the network theorem of Thevenin's and Norton's.Indicative contentIndicative content includes the following.A-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :Network Theorems for A.C. Circuits :	Module Learning			
 5. Describe electrical power, charge, and current. 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's. Indicative content includes the following. A-C circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits : 	Outcomes	· ·		
 6. Define Ohm's law. 7. Identify the basic circuit elements and their applications. 8. Discuss the various properties of resistors, capacitors, and inductors. 9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's. Indicative content includes the following. A-C circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits : 				
Indicative Contentsالمخرجات التعلم للمادة الدر اسيةIndicative Contentsالمخرجات التعلم للمادة الدر اسيةالمادة الدر اسيةالمخرجات التعلم للمادة الدر اسيةالمادة الدر اسيةالمخرجات التعليم للمادة الدر اسيةالمادة الدر المالةالمادة الدر المادةالمادة الدر المادةالمادة الدر المالةالمادة الدرالةالمادة الدر المالةالمادة الدرالةالمادة الذريةالمادة الدرالةالمادة الدر المالةالمادة الدرالةالمادة الدر المالةالمالةالمادة الدر المالةالمالةالمادة الدر المالةالمالةالمادة الدر المالةالمالةالمادة الدر المالةالمالةالمادة الدر المالةالمالة<				
Indicative Contents Indicative Contents المختويات الإرشادي Indicative Contents Indicative Contents Series circuit, impedance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :	مخرجات التعلم للمادة الدر اسبة			
9. Explain the two Kirchoff's laws used in circuit analysis. 10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative content includes the following.A-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :	* 3			
10. Identify the method of analysis (Mesh & Nodal) method. 11. Identify the network theorem of Thevenin's and Norton's.Indicative content includes the following.A-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :				
Indicative ContentsIndicative content includes the following.Indicative ContentsA-C circuitImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :				
Indicative content includes the following. A-C circuit Impedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor. AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L ,R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :				
A-C circuitIndicative ContentsImpedance, admittance, phase diagram, resistance & capacitance, frequency response, inductive & capacitive, reaction power & power factor.AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :				
Indicative Contents المحتويات الإر شادية الموانع دم المحتويات الإر شادية المحتويات الإر ألمانية المحتويات المحتويات الإر ألمانية المحتويات المحتويات المحتويات المحتويات المحتويات المحتويات الإر ألمانية المحتويات المحتويات ا		Indicative content includes the following.		
Indicative Contents المحتويات الإر شادية الموانع دم المحتويات الإر شادية المحتويات الإر ألمانية المحتويات المحتويات الإر ألمانية المحتويات المحتويات المحتويات المحتويات المحتويات المحتويات الإر ألمانية المحتويات المحتويات ا		A-C circuit		
Indicative ContentsAC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :				
Indicative ContentsAC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage divider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram, R-L, R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :Network Theorems for A.C. Circuits :				
Indicative Contentsdivider rule, R-C frequency response, AC parallel circuits, admittance and phase diagram , R-L ,R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :Network Theorems for A.C. Circuits :		response, inductive & capacitive, reaction power & power ractor.		
Indicative Contentsphase diagram , R-L ,R-C & parallel R-L-C circuits, current divider rule, combined circuit.Method of A.C. Analysis :Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions.Network Theorems for A.C. Circuits :Network Theorems for A.C. Circuits :		AC series circuit, impedance phase diagram, R-L, R-C, series R-L-C, voltage		
phase diagram , R-L ,R-C & parallel R-L-C circuits, current divider rule, combined circuit. Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :		divider rule, R-C frequency response, AC parallel circuits, admittance and		
Method of A.C. Analysis : Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :	Indicative Contents	phase diagram , R-L ,R-C & parallel R-L-C circuits, current divider rule,		
Source Conversions, Mesh Analysis. Nodal Analysis, Star-Delta and Delta-Star conversions. Network Theorems for A.C. Circuits :	المحتويات الإرشادية	combined circuit.		
conversions. Network Theorems for A.C. Circuits :		Method of A.C. Analysis :		
Thevenin's Theorem, Norton's Theorem		Network Theorems for A.C. Circuits :		
		Thevenin's Theorem, Norton's Theorem		

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.
	some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ 15 اسبو عا				
Structured SWL (h/sem) Structured SWL (h/w) 5 الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72 Unstructured SWL (h/w) 5 الحمل الدر اسي غير المنتظم للطالب أسبو عيا 5			
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	150			

	Module Evaluation						
	تقييم المادة الدر اسية						
	Time/Number Weight (Marks) Week Due Relevant Learning Outcome						
	Quizzes	1	5%	5	LO # 1 , 2, 3		
Formative	Assignments	1	5%	19	LO # 4 , 5		
assessment	Projects / Lab.		10%				
	Report	1	5 %	11	6		

Summative	Midterm Exam	1.5 hr	15%	10	LO # 1 - 6
assessment	Final Exam	3 hr	60%	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)			
	المنهاج الأسبوعي النظري			
	Material Covered			
Week 1	AC circuits : Impedance, admittance, phase diagram,			
Week 2	resistance & capacitance, frequency response, inductive & capacitive.			
Week 3	reaction power & power factor.			
Week 4	AC series circuit, impedance phase diagram.			
Week 5	R-L, R-C, series R-L-C,			
Week 6	voltage divider rule, R-C frequency response.			
Week 7	AC parallel circuits, admittance and phase diagram.			
Week 8	R-L ,R-C & parallel R-L-C circuits.			
Week 9	current divider rule, combined circuit.			
Week 10	Method of A.C. Analysis : Source Conversions.			
Week 11	Mesh Analysis.			
Week 12	Nodal Analysis.			
Week 13	Star-Delta and Delta-Star conversions.			
Week 14	Network Theorems for A.C. Circuits : Thevenin's Theorem.			
Week 15	Norton's Theorem.			

Week 16	paratory week before the final Exam		
	Delivery Plan (Weekly Lab. Syllabus)		
	المنهاج الأسبوعي للمختبر		
	Material Covered		
Week 1 and	Lab 1: Thevenin's theorem		
Week 3 and	Lab 2: Super Position theorem		
Week 5 and	c 5 and 6 Lab 3: Induction & Capacitive Reactance		
Week 7 and	and 8 Lab 4: Oscilloscope		
Week 9 and	10		
Week 11 and	Veek 11 and 12		
Week 13 and	114		

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Introductory circuit Analysis by Robert L. Boylestad .	Yes		
Recommended Texts	DC Electrical Circuit Analysis: A Practical Approach Copyright Year: 2020, dissidents.	No		
Websites	https://www.coursera.org/browse/physical-science-and-engir	eering/electrical-engineering		

	Grading Scheme				
	مخطط الدرجات				
Group	Grade	التقدير	Marks %	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
(50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
()	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

	Module Information			
Module Title	Fundamentals of AutoCAD tools	Module Delivery		
	Drawing			
Module Type	Support	The y		
Module Code	FATD124			

ECTS Credit	3		Lab
SWL	75		Tutorial
			Practical
			Seminar
Module level	1	Semester of	2
		Delivery	
Module Leader	Tariq Mohammad Hammza	College	Electromechanical Eng. Dept.
Module Leader		e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor		Module Leader's Qualification	PhD. Mech. Eng.
Peer Reviewer Name		e-mail	Tariq.M.Hammza@uotechnology.edu.iq
Scientific		e-mail	
Committee			
Approval Date			
		Version Number	

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module Semester			

Мо	dule Aims, Learning Outcomes and Inductive Contents		
Module Aims	Students learn how to create, edit, store, and print engineering		
	drawings.		
Module Learning	1-Tour of AutoCAD.		
Outcomes	2- User Interface.		
	3- Entering commands.		
	4- Basic Objects.		
	5- Object selection.		
	6- Entering coordinates.		
	7- Object snap.		
	8- Construction Aids.		
	9-Solid and curved objects.		
	10- Adding and Altering objects.		
	11- Moving and Duplicating Objects.		
Inductive Contents	1- Tour of AutoCAD.		
	2- User Interface.		
	3- Entering commands.		
	4- Basic Objects.		
	5- Object selection.		
	6- Entering coordinates.		

7- Object snap.8- Construction Aids.9-Solid and curved objects.
10- Adding and Altering objects.
11- Moving and Duplicating Objects.
12- Modifying and Maneuvering.

Learning and Teaching Strategies			
Strategies	The branch use a problem based learning which new and student active		
method. The method help the student getting the program outcomes.			

Student Workload (SWL)				
Structured SWL (h/sem)48Structured SWL (h/w)4.0				
Unstructured SWL (h/sem)27Unstructured SWL (h/w)2.67			2.67	
Total SWL (h/sem)				

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes				
Assessment	Assignments				
	Projects /	1.5/2	25%	7, 10	LO # 1-7
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	12	All
Assessment	Exam				
	Final Exam	3 hr	60%	15	All
Total assessment		100%			

Delivery Plan (weekly lab. Syllabus)			
	Materials Covered		
Week 1 Tour of AutoCAD.			

Week 2	User Interface.
Week 3	Entering commands.
Week 4	Basic Objects.
Week 5	Object selection.
Week 6	Entering coordinates.
Week 7	Object snap.
Week 8	Construction Aids.
Week 9	Solid and curved objects.
Week 10	Mid-term Exam
Week 11	Moving and Duplicating Objects.
Week 12	Modifying and Maneuvering.
Week 13	Orthographic projection.
Week 14	Isometric Projection.
Week 15	Final Exam
Week 16	

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	Computer Aided Drawing. Assistant professor Ali Hussein Ali Saeed, UOT, 2011			
Recommended Texts	Engineering Drawing. Assistant professor Abed			
	Alrassol AL-Khfaf, UOT, 1990			
Websites				

Module Information					
Module Title	Physics II		Module Delivery		
Module Type	E	Basic	The		
Module Code	PH	YS125	Lecture		
ECTS Credit	6		🗖 Lab		
SWL	150		Tutorial		
			Practical		
			Seminar		
Module level 1		Semester of Delivery	2		
Module Leader	Ahmed Kamil	College	Electromechanical Eng. Dept.		
	Hasan				

Module Leader Academic Title	Prof. assistance	e-mail	eme@uotechnology.edu.iq
Module Tutor		Module Leader's Qualification	PhD. Elect. Eng.
Peer Reviewer Name		e-mail	ahmed.k.alali@uotechnology.edu.iq
Scientific Committee Approval Date		e-mail	
		Version Number	

Relation with other Modules			
Prerequisite Module		Semester	
Co-requisite Module		Semester	

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	In this course, students learn the basic of material science		
	and engineering. Also students learn the principles of		
	mechanical tests of metallic materials.		
Module Learning Outcomes	In this course, students will learn:		
	1) Concept of materials science and materials engineering.		
	2) Study the general classification of engineering materials,		
	in addition to concept and types of advanced materials.		
	3) Analyze the atomic structure and types of atomic bonding		
	in solid materials.		
	4) Realization the principles, properties, synthesize		
	techniques of nanostructures, and advance applications of		
	these materials.		
	5) Study the mechanical properties of metallic materials		
	where this includes mechanical tests types and (elastic,		
	plastic) behaviors.		
	plustic) behaviors.		
Inductive Contents	1- Introduction to materials science and engineering.		
inductive Contents			
	e		
	3- Types and applications of materials		
	4- Mechanical properties.		

Learning and Teaching Strategies		
Strategies The branch use a problem based learning which new and student		
	active method. The method help the student getting the program	
	outcomes.	

Student Workload (SWL)			
Structured SWL (h/sem)63Structured SWL (h/w)4.0			
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	6.0
Total SWL (h/sem)	150		

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	7.5%	5	LO # 1
Assessment	Assignments	1	7.5%	7	LO # 2
	Projects /				
	Lab.				
	Report				
Summative	Midterm	1.5 hr	15%	10	LO # 1 – 3
Assessment	Exam				
	Final Exam	3 hr	70%	17	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)		
	Materials Covered		
Week 1	Introduction		
Week 2	Types of semiconductor materials		
Week 3	Types of semiconductor materials		
Week 4	Current density		
Week 5	Intrinsic semiconductor		

Week 6	Examples
Week 7	The Diode
Week 8	Symbol of Diode in Electronic Circuits
Week 9	Reverse Bias & Current
Week 10	Mid-term Exam
Week 11	General Diode Equation
Week 12	Models of Diode
Week 13	Examples
Week 14	DC or Static Resistance
Week 15	Types of Diodes
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	William D. Callister, "Materials science and			
	engineering (An introduction)," 8th edition.			
Recommended Texts	Bryan Harris, "Engineering composite			
	materials,"The Institute of Materials, London,			
	1999			
Websites				

	Module Information	
Module Title	English Language I	Module Delivery
Module Type	Support	The
Module Code	ENLA125	Lecture
ECTS Credit	2	🗖 Lab
SWL	50	Tutorial
		Practical
		Seminar

Module level	1	Semester of Delivery	2
Module Leader	Faten Noaman Abdullah Noaman	College	Electromechanical Eng. Dept.
Module Leader Academic Title	Lecturer	e-mail	eme@uotechnology.edu.iq
Module Tutor		Module Leader's Qualification	PhD. Mech. Eng.
Peer Reviewer Name		e-mail	50241@uotechnology.edu.iq
Scientific Committee Approval Date		e-mail	
		Version Number	

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims	, Learning Outcomes and Inductive Contents
Module Aims	 In this course, students will learn: Proceeding to the Student the benefits of studying English Language as Second language Giving Knowledge about using the Technical Terminologies in their studies Understanding of using the scientific English language in the Academic Program Giving knowledge of how write, describe, typing the reports in English
Module Learning Outcomes	 In this course, - Computer Science students will learn: 1. Introduction to Computer. 2. Computer Hardware (Microprocessor, Memory, Input and Output Devices). Programming Languages, Operating Systems / Types of Files and Directories 3. Numbers representation (Binary, Decimal, Octal, Hexadecimal) 4. Logic Gates 5. Algorithm and Flow Chart

	 6. Programming in Visual Basic: a. Introduction to visual basic b. Elements of the Integrated Development Environment (IDE) c. Toolbox (Properties and its Events) d. Built the project by using Toolbox and Properties Window e. Built the project by using Code Module f. Input box and Messages box g. Visual Basic Operators h. Conditional Statements (IF, Select Case) 7. One Dimensional Array 8. Two Dimensional Array Subroutine
Inductive Contents	 a. Parts of Speech What are the parts of speech Noun Pronoun Verb Adjective Adverb Proposition Conjunction Interjection b. Preposition What is the preposition? Why does it use. How does it use. c. Your world (unit Two). How to know your world. How to communicate with each other. Knowing your Nationality. d. ALL ABOUT YOUFAMILY AND FRIENDS Personal information Your family members. RELATIVES AND EXTENDED FAMILY. Jobs. e. Everyday Life Sport. Food. Drinks. Activities. f. My favorite Questions words. Pronouns.

 Demonstratives. Adjectives. Favorites. g. Where do I live ROOMS. KITCHEN FURNITURE. Bedroom Furniture. Living Room Furniture. Bathroom. Grammar (difference between SOME and ANY). DIRECTIONS Grammar (difference between BUT&AND). Because and SO.

Learning and Teaching Strategies			
StrategiesThe branch use a problem based learning which new and			
	student active method. The method help the student getting		
	the program outcomes.		

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.00					
Unstructured SWL (h/sem)17Unstructured SWL (h/w)4.67					
Total SWL (h/sem) 100					

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	5%	5	LO # 1 , 2, 3
Assessment	Assignments	1	5%	7	LO # 4 , 5
	Projects / Lab.				
	Report	1	5%	11	6
Summative	Midterm Exam	1.5 hr	15%	9	LO # 1 - 6

Assessment	Final Exam	3 hr	70%	17	All
Total assessm	Total assessment		100%		

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Parts of speech, Introduction of English language, Sentences
Week 2	Introduction
Week 3	Countries
Week 4	Jobs
Week 5	Family
Week 6	The time
Week 7	preposition of time
Week 8	My favorites
Week 9	Rooms and furniture
Week 10	Mid-term Exam
Week 11	Question
Week 12	Saying years
Week 13	Questions (past simple)
Week 14	present continuous
Week 15	Positive (present continuous)
Week 16	Preparatory week before the final Exam

	Learning and Teaching Resources	
	Text	Available in the
		library
Required Texts	John and Liz Soars "New Headway Plus"	YES
	Student's book.	
Recommended Texts	John and Liz Soars "New Headway Plus"	YES
	Workbook without key	
Websites		

	Module Information معلومات المادة الدر اسية	
Module Title	Engineering Mechanics (Dynamic)	Module Delivery

Module Type Module Code ECTS Credits SWL (hr/sem)	Core ENME127 4 100		_	 ☑ Theory □ Lecture ☑ Lab □ Tutorial □ Practical 		
SWE (III/Selli)		100			Seminar	
Module Level		1	Semester o	f Deliver	у	1
Administering Dep	partment	artment EMEN Colleg		EME		
Module Leader	Suad Hamzah	mzah Abbas e-mail 5		50098@uotechnology.edu.iq		du.iq
Module Leader's A	Acad. Title	Lecturer	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	-		e-mail	-		
Peer Reviewer Na	er Reviewer Name		e-mail	-		
Scientific Commit Date	e 07/06/2023		Version Nu	mber	1.0	

Relation with other Modules				
العلاقة مع المواد الدر اسية الأخرى				
Prerequisite module	-	Semester	-	
Co-requisites module	-	Semester	-	

Modu	le Aims, Learning Outcomes and Indicative Contents أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية
Module Objectives أهداف المادة الدراسية	To introduce the basic engineering principles required for analyzing and solvingMotion and the forces that produce it.
Module Learning Outcomes	 By the end of the engineering mechanics module, students will be able to: 1. Understand and apply the principles of dynamics in engineering systems. 2. Analyze and solve problems related to motion of particles. 3. Apply vector mathematics and coordinate systems to engineering

مخرجات التعلم للمادة الدراسية	mechanics problems.
Indicative Contents المحتويات الإرشادية	 Indicative content includes the following. Introduction to dynamic Motion of particles: kinematics and kinetics Newton's laws of motion Work, energy, and power Impulse and momentum Problem-Solving and Applications Engineering problem-solving techniques Case studies and practical examples

Learning and Teaching Strategies استراتيجيات التعلم والتعليم			
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.		

Student Workload (SWL)				
الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) 63 Structured SWL (h/w) 4 الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل 4				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	37 Unstructured SWL (h/w) 2.5 الحمل الدر اسي غير المنتظم للطالب أسبو عيا الحمل الدر اسي غير المنتظم للطالب أسبو عيا			
Total SWL (h/sem) 100				

Module Evaluation							
	تقييم المادة الدراسية Relevant Learning						
		Time/Number	Weight (Marks)	Week Due	Outcome		
Formative assessment	Quizzes	2	7.5% (7.5)	5 and 13	LO #1, #2 and #11, #12		
	Assignments	2	7.5% (7.5)	2 and 12	LO #3, #4 and #6, #7		
	Projects / Lab.	1	10% (10)	Continuous	All		
	Report						
Summative	Midterm Exam	1.5hr	15% (15)	10	LO #1 - #10		
assessment	Final Exam	3hr	60% (60)	16	All		
Total assessment			100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)		
	المنهاج الأسبوعي النظري		
	Material Covered		
Week 1	Introduction to dynamic		
Week 2	Kinematics of particles, rectilinear motion.		
Week 3	Velocity, acceleration and ,motion laws		
Week 4	Plane curvilinear motion (rectangular coordinate (x-y))		
Week 5	Projectile motion		
Week 6	Plane curvilinear motion(normal and tangential coordinates(n-t))		

Week 7	Plane curvilinear motion(polar coordinates(r-θ))
Week 8	Kinetics of particles, Newton's second law
Week 9	Rectilinear motion.
Week 10	Mid-term Exam
Week 11	Curvilinear motion
Week 12	Kinetics of particles, Work, Power.
Week 13	Kinetics of particles, Efficiency.
Week 14	principle of work and kinetic energy.
Week 15	Impulse & momentum
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الأسبوعي للمختبر		
	Material Covered		
Weeks 1,2,3	The fundamental law of rotation		
Weeks 4 ,5,6	The law of energy conservation		
Weeks 7 ,8,9	Calculating the acceleration of a falling body using a simple pendulum		
Weeks 10 ,11,12	Disc rolling on an inclined plane		
Weeks 13 ,14	Uniformly accelerated motion of a flywheel		
Week 15	Final Exam		

Learning and Teaching Resources	
مصادر التعلم والتدريس	

	Text	Available in the Library?
Required Texts	R. C. Hibbeler, "Engineering Mechanics: Statics & Dynamics", 14th ed. Pearson Prentice Hall.	Yes
Recommended Texts	J. L. Meriam and L.G. Kraige, "Engineering Mechanics Dynamics", John Wiley & Sons, 2013	Yes
Websites		

Grading Scheme						
مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	ختر	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

University of Technology

Electromechanical Engineering department

Electromechanical System Engineering Branch

2024 - 2025

Second Cycle,

Bachelor's Degree (B.Sc.) - Electromechanical System Engineering Program

<u> Appendix 2 Program Catalogue</u>

Table of Contents

- 9- Mission and Vision Statement
- 10- Program Specification
- 11- Program Objectives
- 12- Student Learning Outcomes
- 13- Academic Staff
- 14- Credit, Grading and GPA
- 15- Modules
- 16- Contact

1. Mission and Vision Statement

Vision Statement

Aiming to build an engineering establishment in electromechanical systems field to be outstanding one among the top international university.

Mission Statement

1- Prepare our students for successful careers in the energy and renewable energies profession,

2- Conduct high quality and innovative research, and

3- Serve the community and industry providing educational and research resources.

For future plans, the branch intends to cover all required courses in electromechanical engineering sectors in Iraq, including control, electric machines, applied mechanics, robotics systems. Through the communications with Ministry of industry an oil (symposiums, industrial advisory board meeting), the branch developed his courses according to the needs of the ministries.

2. Program Specification

Program Code BSc-EREEECTS 240

Duration 4 Year, 8 Semesters Method of AttendanceFull Time

Subject Areas Requirements

The Electromechanical Systems Engineering program produces graduates who are preparedtoenterthepracticeofelectromechanical systems and its application. For two paths, therearethree major components of the program: (1) foundation in the mathematical and physical sciences, (2) engineering topics in both mechanical and electric systems with design applications, and (3) general education in the humanities, Englishcourse and ethics.

Mathematics and PhysicalSciences

The engineering science fundamentals and engineering design skills are built the upon basicmathematicsandphysicalsciences. Themathematicsworkbegins with a three levels course (six courses) sequence on differential and integral calculus. The first two coursesincludetopicsinlimits, derivatives, and the integrals of functions of one variable, work on partial derivatives and multiple integrals is presented. Vector analysis and three-dimensional analytical geometry, solution of the first and second order linear differential equations with numerous applications, Laplace transforms, power series solutions, numerical methods, linear systems and numerical analysis with engineering applications in numerical differentiation and integration. With this foundation in mathematics, our students have necessary tools for applications in analysis and design.

Physics (two courses) in the first level includes materials science, classification of materials, atomic structure and the type of bonding forces, types of materials and their applications and the mechanical material properties.

It is noted that the number of hours for Math and Basic Science is 30 hours and it's satisfies ICAEE requirement.

EngineeringTopics

Theaimoftheprogramistograduatestudentscapabletoworkasmechanicalan delectrical engineer in electromechanical systems field. The engineering topics are divided into four parts; preliminary joint courses, mechanical courses, electrical courses and final joint courses.

Preliminary joint courses:

• Workshop Training; Preparation of engineering cadres trained scientific and practical areas in the electricity, automobiles, machining(lathe, milling, drilling), forging, denting, filings, forging, welding, andcasting.

• Computer Courses; Computer Science (Visual BASIC programs), Advanced Programming (C++), Application of Advance Computer (Microprocessors and MATLABlanguages).

• Industrial Engineering, determine the most effective ways for an organization to use the basic factors of production.

• EngineeringandMachineDrawingistoteachstudentsmanualdrafting and dimensioning of views, explains the principles of orthographic views, multi view projection and sectional view drawing. Engineering courses are divided into twoparts;

Mechanical Courses,

• Engineering Mechanics. This unit of study aims to provide theoretical knowledge and principles of Statics andDynamics.

• Strength of Material and Vibration. In this course, students will learn; the behavior of solid bodies under loads and deflections, study the simple bending theory for beams and the simple torsion theory for shafts circular and non-circular, deflection of beams, complex stresses, compounds beam and discussion the principles of free & forced vibrations

• Control System, illustration and discussion the Main Theoretical Principles of control systems and understanding of using different systemDamping.

• Thermodynamics, Fundamental thermodynamic concepts including system, state, state postulate, equilibrium, process and cycle, Heat, work, 1st Law of Thermodynamics, Properties of a substance, Energy balances for idealized closed systems, Energy and mass balances for idealized control volumes, 2ndLaw of Thermodynamics, Carnot cycles, thermal efficiencies, Entropy, isentropic processes, isentropic efficiencies, idealized power cycles (Otto, Diesel and Rankine Cycles).

•

FluidMechanics.ThiscourseprovidesaworkingknowledgeofFluidMe chanics and Illustration and discussion the principles of Principle of fluid motional flow classification Bernoulli's equation as well as applications of Bernoulli's equation and anther subject in FluidMechanics.

• Heat Transfer; teach theoretical basics of the conduction, convection and radiation heat transfer Coincided with a laboratory experiment.

85

Electrical Courses,

• Fundamental of Electric Engineering (illustration and discussion the

fundamentalfelectricengineeringanddefinition,proceedingtothestudentthe DC Electrical Circuits, series, parallel, series-parallel and identify the equations voltages ¤t for circuitsabove).

• Electric and Electronic Circuits, in electrical engineering, we are often interested in communicatingortransferringenergyfromonepointtoanother.Todothisrequ ires an interconnection of electrical devices. Such interconnection is referred to as an electriccircuit.

• Electrical Machines, Illustration and discussion the principles of DC and AC machines, description of the machine, as well as its operation in electrical machines.

• Power systems, Giving Knowledge about the generation, transmission, and distribution typesystems.

• Communication, theoretical and practical experiences in analog and digital communication and AM and FM modulation.

• Power Electronics and Electrical Drives, theoretical and practical experiences in the field of power electronics and electrical drives such as AC to DC converters (Rectifiers), DC to AC converters (invertors), DC to DC converters (DC choppers), AC to AC converters (AC voltage regulator and cycloconverter), speed control of DC motors, and speed control of AC motors (inductions and synchronous motors).

Final Joint Courses,

• Electromechanical Equipment, this course specification provides the main features of the Electromechanical Systems andDevices.

• Computer aided design and computer aided manufacturing.

• Signal processing, this course provides the types of signals and analysis of signals. In addition, the comparative between signals is given as well.

Others Including GeneralEducation

The third major area of the curriculum is the general education component. The University of Technology has a mandated General Education Requirements for all degrees. To satisfy the General Education Requirements the Electrometrical Systems Engineering Program set required courses in the general education component as follows:

• English Language(two levels), this course will improve the ability of the students to understand, speak, read and write English as a second language with some technical texts. It is also intended to teach them, how to use technical English effectively as a language of instruction, Lab. Experiments and Exercises, examples, using Technical Terminologies as close as possible to the lectures they receive during their study.

• Human Rights (second level), Freedom and Democracy, the course covers the concept of human rights and development, definition, classes, properties, and the most important human rights conventions and declarations and international conventions on human rights andhumanrightsinreligionsandtheroleofnon-

governmentalorganizationsinthisfield and other human rights issues. The substance of freedom and democracy include the conceptoffreedomandkinds,democracyandthetypesandcomponents,indivi dualliberty and freedom forced to reconcile the sovereignty, freedom, democracy during the Greeks time, lobbyists, the most important theories on the nature of election, the rights of minorities in democratic

87

governance and other topics that make the student familiar with theissues.

• Ethics in Engineering (fourth level), concentrates on professional Ethics.

• Sport (first level), concentrates on different sport activities.

3. Program Goals (objectives)

1- Entering the electromechanical systems engineering profession as practicing engineers and consultants with prominent companies and organizations in diverse areas that related to electromechanical systemsengineering.

2- Pursuing graduate education and research at major research universities in electromechanical systems engineering, and related fields

3- Advance in their chosen fields to supervisory and management positions

4- Engage in continued learning through professional development

5- Participate in and contribute to professional societies and community services

4. Student (Graduate) Learning Outcomes

Students from the electromechanical systemsprogram will attain (by the time of graduation):

1. An ability to identify, formulate, and solve engineering in electromechanical systems engineering problems by applying principles of engineering, science, and mathematics.

2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and global, cultural, social, environmental, economic, and

other factors as appropriate to the discipline

3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

4. An ability to communicate effectively with a range of audiences

5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

6. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge

7. An ability to function effectively as a member or leader of a team that establishes goals, plans tasks, meets deadlines, and creates a collaborative and inclusive environment

5. Academic Staff (Faculty)

Faculty Name	Highest Degree Earned- Field and Year	Rank	Email
Jalal Mohammed Jalil	PhD. in Mech. Eng. (1989)	Prof.	50003@uotechnology.edu.iq
Israa Saad Ahmed Naseif	PhD. in Mech. Eng. (2017)	AST	Israa.s.ahmed@uotechnology.edu.iq
Hashim Abed Hussein Hameed	PhD. in Mech. Eng. (2006)	Р	50005@uotechnology.edu.iq
Jamal Abdul-Kareem Mohammed Abdullah	PhD. in Elect. Eng. (2007)	Р	50128@uotechnology.edu.iq
Mohammed KadhimEdan	PhD. in Elect. Eng. (2017)	Р	50055@uotechnology.edu.iq
Azhar Sabah Ameed	MSc. Mech. Eng. (1999)	Р	
Hussein ThaniRishagTubiSwadi	PhD. in Elect. Eng. (2005)	AST	
AbduljabbarOwaidHanfe shjarad	PhD. in Elect. Eng. (2009)	AST	
AhlamLouabiShreajee	PhD. in Elect. Eng. (2017)	AST	
ManalKadhimOudahHas an	PhD. in Elect. Eng. (2009)	AST	
WisamEssmat Abdul- Lateef	PhD. in Mechatronics Eng. (2017)	AST	
Tariq Mohammad Hammzakhalaph	PhD. in Mech. Eng. (2016)	AST	
Adnan GhareebTuaamah Al-Hasnawi	PhD. in Mech. Eng. (2016)	AST	
AbduljabbarMuttair Ahmed MizbanAlsaedi	PhD. in Mech. Eng. (2012)	Ι	
AneesFadhelSaadHaz am	PhD. in Mech. Eng. (2018)	AST	
FatenNoaman Abdullah Noaman	PhD. in Mech. Eng. (2019)	AST	
MuroojNadhom Mohammed Ali Musa	PhD. in Elect. Eng. (2020)	Ι	
Bassam Ali Ahmed Mohammed Ali	PhD. in Mech. Eng. (2021)	AST	

MajidaKhaleel Ahmed Mohsen	PhD.Elect. Eng. (2007)	A	
NajatShyaaJasim Mohammed	MSc. Elect. Eng. (2001)	AST	
JenanAyadNamuq	MSc. Elect. Eng. (2015)		
Wisam Ali Hassan ALZUHAIRI	MSc. Law (2012)		
Rafah Kareem MahmoodHasan	MSc. in Computer (2015)	Ι	
EnasMozaheem Abed	MSc. Mech. Eng. (2001)		
WaleedKadhim Salman Al-Azzawi	MSc. Mech. Eng. (2017)		
Wisam Ali Hassan ALZUHAIRI	MSc. Law (2012)		
Rawaa Ahmed Hilal	MSc. Physics		

9. Credit Grading and GPA

Credits

University of Technology is following the bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structure and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who are failed a course. The grading system is defined as follows:

Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition
Success	A - Excellent	امتياز	90 - 100	Outstanding
Group	B – very Good	جيد جدا	80 - 89	Above average with some errors
(50-100)	C - Good	جيد	70 - 79	Sound work with notable Error
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings

	E - Sufficient	مقبول	50 - 59	Work with met minimum criteria
Fail Group	FX – Fail	راسب	45-49	More work required but credit awarded
(0-49)		قيد		_
		المعالجة		
	F - fail	راسب	0 - 44	Considerable amount of work required
Notes:				
Marks with decimal places above or below 0.5 will rounded to the higher or lower full mark (for				

example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The university has a policy NOT to condone "near pass fail" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Calculation of the Cumulative Grade Point Average (CGPA)

The CGPA is calculated by the summation of each module score multiplied by ita ECTS, all are divided by the program total ECTS.

CGPA of a 4 – year B.SC. Degrees:

CGPA = $[91^{st} \text{ module score x ECTS}) + (2^{nd} \text{ module score x ECTS}) + ...]/240$

10.Curriculum/Modules

Semester 1: 30 ECTS: 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
CBRI201	Crimes of the Baath	33	17	2	S	Human Rights in the first
	Regime in Iraq					stage
ADMT202	Advanced	63	87	6	В	MathematicsIin the first stage
	Mathematics I					
ELMA203	Electrical Machines I	63	62	5	С	Fundamental of Electrical
						Engineering in the first stage
ELCI204	Electrical Circuits	63	62	5	С	Fundamental of Electrical
						Engineering in the first stage
THDY205	Thermodynamics	63	37	4	С	
STMA206	Strength of Material	63	62	5	С	Mechanics in the first stage
COMP208	Computer II	48	27	3	S	Computer Science I in the
	Computer II					first stage

Semester 2: 30 ECTS: 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
SPRT209	Sport	33	17	2	S	
ADMT210	Advanced	63	87	6	В	Mathematics II in first stage
	Mathematics II					
ELMA211	Electrical Machines	63	62	5	С	Fundamental of Electrical
	II					Engineering in the first stage
ELCI212	Electronic Circuits	63	62	5	С	Fundamental of Electrical
						Engineering in the first stage
FLMA213	Fluid Mechanics	63	62	5	C	
HETR214	Heat Transfer	63	62	5	С	Thermodynamics in first
						course
ENLA207	English Language II	33	17	2	S	English Language I

11. Contact:

Program Manager:Israa Saad Ahmed, Prof. Assistance, PhDin Mech. Eng. (2017)

Program Coordinator: Murooj N. Mohammed Ali, Lecturer, PhD Electrical Eng. 2020

<u>Appendix 3 Modules Catalogue</u>

Table of Contents

- 4- Overview
- 5- Undergraduate Modules
- 6- Contact
- 4. Overview

This catalogue is about the courses (modules) given by the program of Electromechanical Systems Engineering to gain the Bachelor of Science degree. This program delivers 48 Modules with 6000 total student workload hours and 240 total ECTS. The module deliver is based on the Bologna Process.

5. Undergraduate Courses

First Semester

Module 1

Code	Course/module Title	ECTS	Semester		
CBRI201	Crimes of the Baath	2	1		
	Regime in iraq				
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(hr/sem)	USWL (hr/sem)		
2		33	17		
	Descript	tion			
The goal of this course is to learn the students about making this generation aware of the crimes committed by the Baathist regime, and the extent of human rights violations					
publicly					

Module 2

Code	Course/module Title	ECTS	Semester		
ADMT202	Advanced Mathematics I	6	1		
Class (hr/w)	Lect./Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
4	-	63	87		
Description					
Themathematicsworkbegins with the topics including problems with partial differential equations, differential equations, methods to solve second order differential equations, and some applications each of them					

Module 3

Code	Course/module Title	ECTS	Semester		
ELMA203	Electrical Machines I	5	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
2	-/2-/-/-	63	62		
Description					
As electrical maching	nes either it is a generator of	a motor are importance	e in our daily life, this		

As electrical machines either it is a generator or a motor are importance in our daily life, this course deals with DC machines. It is essentially providing knowledge of the DC machine construction, working principle and mathematical models for different types of DC generator and DC motor. It is also introducing performance analysis of the DC based on studding different characteristics of the machines. Moreover, it deals with efficiency calculation to evaluate the machine performance.

Code	Course/module Title	ECTS	Semester			
ELCI204	Electrical Circuits	5	1			
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)			
2	- / 2-/ - / -	63	62			
	Descrip	tion				
students of 2 nd year is which gained by this learning opportunities	This course specification provides the main features of the theory of electric circuit for the students of 2 nd year in the Electromechanical Engineering Department. Learning outcomes which gained by this program will help a typical student to achieve and demonstrate the learning opportunities that are provided during the course study and to comply with the programmer specification as Energy and Renewable Energies Engineering.					

Module 5

Code	Course/module Title	ECTS	Semester	
THDY205	Thermodynamics	4	1	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2	- /2/-/-/-	63	37	
Description				
Thermodynamics is the branch of physics that deals with the relationships between heat, work, temperature, and energy. Its principles are crucial for understanding how energy is transferred and transformed in physical and chemical processes.				

Module 6

Code	Course/module Title	ECTS	Semester		
STMA206	Strength of Materials	5	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
2	-/2/-/-	63	62		
	Description				
This course provides an understanding of the mechanics of deformable materials and structures. It introduces the concepts of stress and strain, and basic structural elements like rods, beams, and shearing and bending elements.					

Code	Course/module Title	ECTS	Semester		
COMP208	Computer II	3	1		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
1	-/2/-/-	48	27		
Description					
This course deals with C++ program and the following topics are included in this course					
1- Introduction to C++					

- 2- Selection
- 3- Iteration
- 4- Array
- 5- Pointer
- 6- Reference

Second semester

Module 1

Code	Course/module Title	ECTS	Semester		
SPRT209	Sport	2	2		
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
2	-	33	17		
Description					
This course considers the main sport games.					

Module 2

Code	Course/module Title	ECTS	Semester		
ADMT210	Advanced Mathematics II	6	2		
Class (hr/w)	Lect/Lab./Prac./Tutor	USWL (h/sem)			
4	4 - 63 87				
Description					
Themathematicsworkbegins with the topics including sequence, convergence of sequence, series, power series, Fourier series. Laplace transform, inverse Laplace transform, and solution of differential equation using Laplace transform is also presented in this course.					

lectrical Machines II	5	2		
ect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)		
2 -/2/-/- 63 62				
Description				
	- / 2 / - / - Descrip	- / 2 / - / - 63 Description		

As types of an AC electrical machine, transformer and three-phase induction motor are playing essential part in our life regarding power transmission and consuming, this course deals with transformer and three-phase induction motor. It is essentially providing knowledge of the transformer and three-phase induction motor construction, working principle. It is also introducing performance analysis of the transformer based on its equivalent circuit. Moreover, it deals with prediction of the motor equivalent circuit parameters in order to analysis the motor performance including torque and efficiency

Module 4

Code	Course/module Title	ECTS	Semester			
ELCI212	Electronics Circuits	5	2			
Class (hr/w)	Lect/Lab./Prac./Tutor	Lect/Lab./Prac./Tutor SSWL(h/sem)				
2	-/ 2 / - / - 63 62					
Description						
This course specification provides the main features of the theory of electronic circuit for the students of 2 nd year in the Electromechanical Engineering Department. Learning outcomes which gained by this program will help a typical student to achieve and demonstrate the learning opportunities that are provided during the course study and to comply with the programmer specification as Energy and Renewable Energies Engineering.						

Module 5

Code	Course/module Title ECTS Semester						
FLMA213	Fluid Mechanics	5	2				
Class (hr/w)	Lect/Lab./Prac./Tutor SSWL(h/sem) USWL (h/set						
2	-/ 2- / - 63 62						
Description							
Fluid mechanics is one of the basic sciences in which the laws of equilibrium and movement							
of fluids are studied. It can be divided into statics fluid and dynamics fluid. It has a wide							
application in hyd	lraulic engineering and in the w	ork of transporting a	nd storing liquids and				

gases.

Code	Course/module Title	ECTS	Semester	
HETR214	Heat Transfer	5	2	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL(h/sem)	USWL (h/sem)	
2 2 63 62				
Description				
The goal of this course is to build up the student's interest in fundamentals of the English				
language basics such as grammar, punctuation, tense types, reading skills, Writing skills, and presentation skills.				

Module 7

Code	Course/module Title	ECTS	Semester		
ENLA207	English Language II	2	2		
Class (hr/w)	Lect/Lab./Prac./Tutor	USWL (h/sem)			
2 - 33 17					
Description					
The goal of this course is to build up the student's interest in fundamentals of the English					
language basics such as grammar, punctuation, tense types, reading skills, Writing skills, and					
presentation skills.					

6. Contact:

Program Manager:Israa Saad Ahmed, Prof. Assistance, PhD in Mech. Eng. (2017)Program Coordinator:Murooj N. Mohammed Ali, Lecturer, PhD Electrical Eng. (2020)

Appendix 4 Modules Description Form

FirstSemester

Module Information					
Module Title	Crimes of the Baath Regime in iraq		Module Delivery		
Module Type	Su	pport	Theory		
Module Code	CB	RI201	Lecture		
ECTS		2			
Credit/year			Tutorial		
SWL/year		50	Practical		
			Sem		
Module level	1	Semester of Delivery	1		
Module Leader	Wisam Ali	College			
	Hassan				
Module Leader	Assist Lecturer	e-mail			
Academic Title					
Module Tutor	-	Module Leader's	MSc.		
		Qualification			
Peer Reviewer	-	e-mail	wisam.A.Hasan@uotechnology.edu.iq		
Name					
Scientific		e-mail	-		
Committee					
Approval Date					
-	-	Version Number	1		

Relation with other Modules				
Prerequisite Module Democracy and Human Rights Semester 1				
Co-requisite Module	Semester	-		

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	• Making this generation aware of the crimes committed by the		
	Baathist regime		
	• The extent of human rights violations publicly		
	• Spreading awareness of the extent of violation of Sharia and law		
Module Learning	The student will learn about generation aware of the crimes committed		
Outcomes	by the Baathist regime.		

Inductive Contents	
	19. Introducing the student to Rejecting Baathist
	20. Familiarize students with Recognizing the ugliness crimes committed
	21. Introducing students to the Killing and slaughtering the Shiite Kurds
	22. Introducing the student to theHiding signs of genocide
	23. Familiarize students with expressing an opinion.

Learning and Teaching Strategies					
Strategies -					
Student Workload (SWL)					
Structured SWL (h/sem)	33	Structured SWL (h/w)	2.00		
Unstructured SWL (h/sem) 17		Unstructured SWL (h/w)	1.13		
Total SWL (h/sem)					

	Module Evaluation				
		Time/No.	Weight	Week Due	Relevant
			(Marks)		Learning
					Outcome
Formative	Quizzes	-	_	-	-
Assessment	Assignments				All
	Projects /	Every 3 weeks	50%	Continuous	-
	Practice				
	Report	-	_	-	-
Summative	Midterm	-	-	-	-
Assessment	Exam				
	Exam	Every 3 weeks	50%	Continuous	All
	Total assessment		100%	-	-

Delivery Pla	Delivery Plan (Weekly Syllabus)		
	Materials Covered		
Week 1	Rejecting Baathist		
Week 2	Recognizing the ugliness crimes committed		

Week 3	Violations committed			
Week 4	For the sake of humanity			
Week 5	Oppressin	g.andexterminating.the people		
Week 6	Cruelty,in	timidation and torture		
Week 7	Politics of	repression		
Week 8	Reject the	idea of change		
Week 9	expressing	an opinion		
Week 10	Burying crime scenes			
Week 11	Killing and slaughtering the Shiite Kurds			
Week 12	Concealing the evidence of crimes			
Week 13	Continuous killing			
Week 14	Hiding signs of genocide			
Week 15	Collectiv the people			
	•	Learning and Teaching Resources		
	-	Text	Available in the	
			library	
Require	ed Texts	A methodological book (Crimes of the Baath	Yes	
		Regime in Iraq)Ministry of Higher Education		
		and Scientific Research		
Recomme	nded Texts	-	-	
Web	Websites			

First Semester

	Module Information	
Module Title	Advanced Mathematics I	Module Delivery
Module Type	Basic	Theory
Module Code	ADMT202	
ECTS Credit	6	🔲 Lab

SWL]	150	 Tutorial Practical Seminar
Module level	1	Semester of Delivery	1
Module Leader	FatenNoaman Abdullah	College	Electromechanical Eng. Dept.
Module Leader Academic Title	Assistance Prof.	e-mail	eme@uotechnology.edu.iq
Module Tutor	-	Module Leader's Qualification	PhD. Elec. Eng.
Peer Reviewer	-	E-mail	
Name			50241@uotechnology.edu.iq
Scientific Committee	-	E-mail	-
Approval Date			
-	-	Version Number	-

Relation with other Modules			
Prerequisite Module	Mathematics I	Semester	1
Co-requisite Module	_	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	In this course, the students will learn:	
	How to solve the problems with partial	
	differential equations, differential	
	equations, methods to solve second order	
	differential equations, and some applications	
	each of them	
Module Learning Outcomes	1.Use and describe the meaning of	
	mathematical concepts and their inter-	
	relationships.	
	2. Employ procedures and solve standard	
	tasks with and without tool.	
	3. Formulate, analyze and solve mathematical	
	problems, and assess selected strategies,	
	methods and results.	
	4.Follow, apply, and assess mathematical	
	reasoning	
	5. Relate mathematics to its	

	importance and use in other subjects, in a professional, social and historical context
Inductive Contents	 Partial differential equations. Chain rules, implicit derivatives. Directional derivatives. Gradient vectors. Differential Equations (first and second order differential equations.

	Learning and Teaching Strategies
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.00				
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	5.8	
Total SWL (h/sem) 150				

Module Evaluation					
	-	Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects / Lab.	-	-	-	-
	Report	1	10%	11	6
Summative	Midterm Exam	1.5 hr	20%	9	LO # 1 – 6
Assessment	Final Exam	3 hr	50%	17	All
	Total assessment			-	-

Delivery Plan (Weekly Syllabus)		
Materials Covered		
Week 1 Introduction to derivatives.		

Week 2	Partial derivative, definition, rules, and examples.	
Week 3	Clairaut's Theorem.	
Week 4	Chain Rules	
Week 5	Implicit Derivative	
Week 6	Directional Derivatives	
Week 7	Gradient Vector	
Week 8	Directional derivative properties.	
Week 9	Applications of partial derivative [Increasing and Decreasing, Tangent planes,	
	Linear approximation].	
Week 10	Deferential equations	
Week 11	Methods of solving D.E. [separable of variable, reducible to separable of	
	variables, non-homogenous, exact and Non-Exact].	
Week 12	Continue solving D.E.	
Week 13	Non -Exact OR Reducible to Exact Differential Equation and Integrating Factor.	
Week 14	Second order D.E.	
Week 15	Solving non-homogenous second order D.E.	
Week 16	Preparatory week before the final Exam	

Learning and Teaching Resources				
	Text			
		library		
Required Texts	Thomas' Calculus Early Transcendentals Thirteenth Edition	YES		
Recommended Texts	Advancing Differentiation: Thinking and Learning by Richard M. Cash, Ed.D. 2017	YES		
Websites	ALL academic Publications in Scopus and Web of Science.	YES		

	Module Information				
Module Title	Electrical Machines I		Module Delivery		
Module Type	Core		TheoryLecture		
Module Code	ELMA203		■ Lab ■ Tutorial		
ECTS Credit	5		PracticalSeminar		
SWL	125				
Module level	1	Semester of Delivery			
Module Leader	Abduljabbar.O.Hanf esh	College	Electromechanical Eng. Dept.		
Module Leader Academic Title	Prof. Assistance	e-mail	eme@uotechnology.edu.iq		
Module Tutor	-	Module Leader's Qualificatio n	PhD. in Electrical		
Peer Reviewer Name	-	e-mail	Abduljabbar.O.Hanfesh@uotechnology.ed .iq		
Scientific Committee Approval Date	-	e-mail	-		
-	-	Version Number	-		

Relation with other Modules				
Prerequisite Module - Semester -				
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims The main aims of this course			
	are		
	 provide learners with knowledge and 		
an understanding of the working			

	 principle, and constructional features of DC machines. Functionality of DC generators and DC Motors with their classification evaluate efficiency of the DC machines under different load operation conditions.
Module Learning Outcomes	 At the end of this course students will demonstrate the ability to Understand the concept of energy conversion from electrical form to mechanistical form and vice versa. Understand the principle operating of both DC generator and DC motor Analysis the armature reaction in DC machine Explain commutator process in DC machines Evaluate DC generator EMF, efficiency for different load conditions Evaluate different types of DC generators based on their performance characteristics Analysis back-EMF and torque of the DC motor Mention different speed control methods for DC motor based on the speed equation. Summarize losses that would be occurred on the dc machines and classified them.
Inductive Contents	 1-Introduction, Basics of electrotechnical energy conversion. 2- Construction of DC machine and operating principle of DC generation. 3- EMF equation of dc generator. 4- armature reaction and commutator process in DC machines 5- classification of DC generator and mathematical model of each type. 6- Voltage build up process in self-excited DC generator.

 7- Characteristics of DC generator. 8- Torque equation of DC motor and back-EMF. 9- Speed control methods of DC motor. 10- Performance characteristics of DC motor 	
motor 11- losses and efficiency of DC machine.	

Learning and Teaching Strategies				
Strategies The branch use a problem based learning which new and student				
active method. The method help the student getting the program				
	outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.00					
Unstructured SWL (h/sem)62Unstructured SWL (h/w)4.13					
Total SWL (h/sem) 125					

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 4
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Plan (Weekly Syllabus)

	Materials Covered
Week 1	Dc Machines construction
Week 2	Armature windings
Week 3	Armature reaction
Week 4	Types of Dc Generators
Week 5	Mathematical model of DC generator types
Week 6	Characteristics of DC generators
Week 7	Losses and efficiency
Week 8	Operating principle of DC motor
Week 9	Types of DC motor
Week 10	Mid-term Exam
Week 11	Mathematical model of DC motor types
Week 12	Characteristics of DC motor
Week 13	Speed control of DC motor
Week 14	Starting of DC motor
Week 15	Losses and efficiency of DC motor
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	P. C. Sen, "Principles of electric machines and power electronics", John Willy and Sons Inc., 1997.	-		
Recommended Texts		-		
Websites	-	-		

	Module Information					
Module Title	Electrical Circuits		Module Delivery			
Module Type	Co	ore	Theory			
Module Code	ELC	21204	Lecture Lecture			
ECTS Credit		5	Lab			
SWL	12	25	Tutorial			
			Practical			
			Sem_ar			
Module level	1	Semester of	1			
		Delivery				
Module Leader	JenanAyadNamuq	College	Electromechanical Eng. Dept.			
Module Leader	Lec.	e-mail	@uotechnology.edu.iq			
Academic Title						
Module Tutor	-	Module Leader's	PhD. Elec. Eng.			
		Qualification				
Peer Reviewer	-	E-mail	jinan.a.namuq@uotechnology.edu.iq			
Name						
Scientific	-	E-mail	-			
Committee						
Approval Date						
-	-	Version Number	-			

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning	Aims, Learning Outcomes and Inductive Contents		
Module Aims	Students successfully completing this course should be able to		
	perform the following tasks with minimum degree of difficulty:		
	1. To develop an understanding of the fundamental laws and		
	elements of electrical circuits.		
	2. To learn the energy properties of electric elements and the		
	techniques to measure voltage and current.		
	3. To develop the ability to apply circuit analysis to DC and A		
	circuits		
	4 To understand transient and steady-state response of RLC		
	circuits and to understand advanced mathematical methods		
	such as Laplace transforms for solving circuit problems.		
	5 To provide an exposure to P-Spice.		
Module Learning	These are sample Strategies; which teachers can use to		

Outcomes	 accelerate the attainment of the various course outcomes. 1. Lecturer method (L) needs not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. 2. Use of Video/Animation to explain functioning of various concepts. 3. Encourage collaborative (Group Learning) Learning in the class. 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyses information rather than simply recall it. 6. Introduce Topics in manifold representations. 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them. 8. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.
Inductive Contents	 1- Natural and Step Responses of First and Second Order Circuits 2- Natural Responses of a Series and a Parallel RLC Circuits 3- Step Responses of a Series and a Parallel RLC Circuits 4- Balanced Three-Phase Voltages-part1 5- Balanced Three-Phase Voltages- part2 6- Resonance Circuits- part1 7- Resonance Circuits- part2 8- Two-Port Networks-part1 9-Two-Port Networks part2 10- Two-Port Networks part3 11- mini-project. 12- Review

Learning and Teaching Strategies		
Strategies	The branch use a problem based learning which new and student active	
	method. The method help the student getting the program outcomes.	

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.0					
Unstructured SWL (h/sem)62Unstructured SWL (h/w)					

Total SWL (h/sem) 125

		Module E	Evaluation		
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes		10%		
Assessment	Assignments		10%		
	Projects /	1.5/2	-	7, 10	LO # 1-7
	Lab.				
	Report		10%		
Summative	Midterm	1.5 hr	20%	12	All
Assessment	Exam				
	Final Exam	3 hr	50%	15	All
Total assessment		100%	-	-	

	Delivery Plan (weekly lab. Syllabus)
	Materials Covered
Week 1	Natural and Step Responses of First and Second Order Circuits
Week 2	Natural and step responses of an RL circuit 1
Week 3	Natural and step responses of an RC circuit.1
Week 4	Natural and step responses of a Parallel RLC circuit
Week 5	Natural and step responses of a Series RLC circuit
Week 6	Balanced Three-Phase Circuits
Week 7	Balanced 3-phase voltages, Balanced WYE-WYE connection
Week 8	Balanced WYE- Delta connection
Week 9	Balanced Delta - Delta connection.
Week 10	Mid-term Exam
Week 11	Power in balanced 3-phase system
Week 12	Modifying and Maneuvering.
Week 13	Resonance circuits
Week 14	Series resonance, Parallel resonance, Transfer function, Decibel scale, Bode plots
Week 15	Two-Port Networks: (Impedance parameters, Admittance parameters, Hybrid parameters, Transmission parameters)
Week 16	Preparatory week before the final Exam -

Learning and Teaching Resources			
	Text	Available in the	

		library
Required Texts	Basic AC circuits, John Clayton Rawlins.2nd	-
	Edition, 2000.	
Recommended Texts		-
Websites	-	-

	М	odule Information	
Module Title	Thermodynamics		Module Delivery
Module Type	(Core	Theory
Module Code	TH	DY205	Lecture
ECTS Credit		4	Lab
SWL		100	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Hashim A.	College	Electromechanical Eng.
	Hussain		Dept.
Module Leader	prof.	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	, j
Peer Reviewer	-	E-mail	50005@uotechnology.edu.iq
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	The goal of this course in engineering	
	thermodynamic is study how the student	
	improves the efficiency of a process for the	
	transformation between energy and work. To	
	study energy conservation and to study	
	energy the entropy of a system.	

Module Learning Outcomes	Students learn how to apply the basic
	principles from engineering thermodynamic
	to calculate the force and power developed or
	consumed in the thermodynamic. Students
	will also learn how to handle an open-ended
	design problem in the team project. The
	question asked at the beginning of this section
	can also be asked in a slightly different way.
	Why should a future engineer bother studying
	thermodynamic engineering?
Inductive Contents	Students learn how to apply the basic
	principles from engineering thermodynamic
	to calculate the pressure, volume, entropy and
	power developed by work cycles. Students
	will also learn how to handle an open-ended
	design problem in the team project

Learning and Teaching Strategies			
Strategies	The branch use a problem based learning which new and student		
	active method. The method help the student getting the program		
outcomes.			

Student Workload (SWL)			
Structured SWL (h/sem)63Structured SWL (h/w)4.00			
Unstructured SWL (h/sem)37Unstructured SWL (h/w)4.13			
Total SWL (h/sem) 100			

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	1	-		LO # 3
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 5
Assessment	Exam				

	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	THERMODYNAMICS DEFINITION
Week 2	INTRODUCTION AND TTHERMODYNAMIC PROPERTIES
Week 3	OUTLINE OF SOME DESCRIPTIVE SYSTEMS
Week 4	BASIC CONCEPTS OF THERMODYNAMICS
Week 5	PROPERTIES OF PURE SUBSTANCES
Week 6	FIRST LAW OF THERMODYNAMICS
Week 7	APPLICATIONS OF FIRST LAW OF THERMODYNAMICS
Week 8	SOLVED EXAMPLES OF FIRST LAW OF THERMODYNAMICS
Week 9	SECOND LAW OF THERMODYNAMICS
Week 10	ENTROPY AND THERMODYNAMIC PROPLEMS
Week 11	THERMODYNAMIC RELATIONS
Week 12	IDEAL AND REAL GASES
Week 13	APLICATIONS OF IDEAL AND REAL GASES
Week 14	SOLVED EXAMPLES OF SECOND LAW OF THERMODYNAMICS
Week 15	MIDTERM EXAMINATON
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	Thermodynamic an Engineering Approach,	-		
	Yunus A. Cengel, Michael A. Boles, 5 th edition			
	2004			
Recommended Texts	Thermodynamic an Engineering Approach,	-		
	Yunus A. Cengel, Michael A. Boles, 5 th edition			
	2004			
Websites	-	-		

		ion	
Module Title	Strength of Materials		Module Delivery
Module	Core		■ Theory
Туре			Lecture Lecture
Module	STMA	206	Lab
Code			Tutorial
ECTS Credit	5		Practical
SWL	12:	5	Semar
Module level	1	Semester of	1
		Delivery	
Module	Tariq.M.Hammza	College	Electromechanical Eng. Dept.
Leader			
Module	Assist Prof.	e-mail	Tariq.M.Hammza@uotechnology.edu.iq
Leader			
Academic			
Title			
Module Tutor	-	Module Leader's	PhD. in Mech. Eng.
		Qualification	
Peer Reviewer	-	e-mail	
Name			
Scientific	-	e-mail	-
Committee			
Approval Date			
	-	Version Number	-

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductiv	ve Contents
Module Aims, Learning Outcomes and Inductive Module Aims	 Introduces the fundamental concepts in mechanics of materials by study of the behavior of solid bodies under loads and deflections. Study the simple bending theory for beams and the simple torsion theory for shafts (circular) and non-circular, deflection of
	 encentral, and non-encentral, deflection of beams, complex stresses, compounds beam. Illustration and discussion the principles of free & forced vibrations and definition with and without damping.

	• Proceeding to the Student free &
	forced vibrations of single degree of freedom
	and two degree of freedom.
Module Learning Outcomes	This course will enable students;
	1. To understand the basic concepts of the
	stresses and strains for different materials
	and strength of structural elements.
	2. To know the development of internal
	forces and resistance mechanism for one
	dimensional and two dimensional
	structural elements.
	3. To analyse and understand different
	internal forces and stresses induced due to
	representative loads on structural
	elements.
	4. To analyse and understand principal
	stresses due to the combination of two
	dimensional stresses on an element and
	failure mechanisms in materials. 5. To
	evaluate the behavior of torsional
	members, columns and struts.
Inductive Contents	Module (1): Simple Stresses and Strain:
	Introduction, Definition and concept and of
	-
	stress and strain. Hooke's law, Stress-Strain
	-
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars,
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship.
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses:
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders:
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external
	stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame's equation, radial and hoop
	 stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to selfweight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship. Module (2): Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external

Module (3): Bending and Shear Stresses in
Beams:
Introduction, pure bending theory, Assumptions, derivation of bending equation, modulus of rupture, section modulus, flexural rigidity. Expression for transverse shear stress in beams, Bending and shear stress distribution diagrams for circular, rectangular, 'I', and 'T' sections. Shear centre(only concept). Module (4): Torsion in Circular Shaft:
Introduction, pure torsion, Assumptions, derivation of torsion equation for circular shafts, torsional rigidity and polar modulus Power transmitted by a shaft, combined bending and torsion.

Learning and Teaching	Strategies
Strategies	The branch use a problem based learning which new and student active method. The method help the student getting the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)	63	Structured SWL (h/w)	4.0
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4.13
Total SWL (h/sem)	125		-

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	1	-		LO # 3
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment			100%	-	-

	Delivery Plan (Weekly Syllabus)
	Introduction to dynamic.
Week 1	Introduction: Equilibrium of a deformable body
Week 2	Stress: Average normal Stress In an axially loaded bar
Week 3	Stress: Average Shear Stress, Bearing Stress, allowable Stress design
Week 4	Strain: Normal Strain, Shear Strain, Cartesian Strain Components.
Week 5	Mechanical Properties of Materials: The Tension and compression test, The stress–strain diagram, Behavior of ductile and Brittle materials
Week 6	Mechanical Properties of Materials: The shear stress–strain diagram, Poisson's ratio.
Week 7	Axial Load: Elastic Deformation of an Axially Loaded Member
Week 8	Midterm Exam
Week 9	Axial Load: Statically Indeterminate Axially Loaded Members, Thermal Stress
Week 10	Torsion: Torsional Deformation of a Circular shaft, The Torsion formula, Power Transmission
Week 11	Torsion: Angle of Twist, statically indeterminate Torque-loaded members
Week 12	Bending:Shear and Moment diagrams
Week 13	Bending: Graphical method for constructing shear and moment diagrams
Week 14	Bending:Bending deformation of a Straight Member, the flexure formula
Week 15	Bending:Composite Beams
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources		
	Text	Available in the
		library
Required Texts	 Mechanics of Materials I., E. J. HEARN, THIRD EDITION, 2007. Strength of materials, G. G. Jon, 2009. Mechanical vibration by S.S. Rao. 	-
Recommended Texts		-
Websites	_	-

	Мо	dule Information	
Module Title	Com	puter II	Module Delivery
Module Type	Supp	olement	Theory
Module Code	COI	MP208	
ECTS Credit		3	Lab
SWL		75	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	1
Module Leader	Asifa M	College	Electromechanical Eng.
	Mohammed		Dept.
Module Leader	Prof. Assistance	e-mail	eme@uotechnology.edu.iq
Academic Title			
Module Tutor	-	Module Leader's	Msc. Mech. Eng.
		Qualification	
Peer Reviewer	-	e-mail	50009@uotechnology.edu.iq
Name			
Scientific	-	e-mail	
Committee			
Approval Date			
-	-	Version Number	

	Relation with other Mod	lules	
Prerequisite Module	Computer course in the first	Semester	SemesterFirstStage
	stage		
Co-requisite Module	-	Semester	-

Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	The student can learn about the principles of the programming language The student can use the language program The student has the ability to apply computer programs and use the C++ program	
Module Learning Outcomes	to able be will student the, course the completing A a1. Recognize the fundamental programming concepts such as variables, Selection, Iteration, and arrays using C++.	

	b1. Create programs using C++ programming language.
	b2. Develop a detailed algorithmic solution to a well-defined problem.
	c1. Apply C++ programming
	language syntax to programming
	problems
	d1. Work effectively both in a team
	and
	independently.
	9.
Inductive Contents	1. What is programming
	2. What are programming languages
	3. Codeblocks
	4. C++ programming on mobile
	5. Definition of variables
	6. Rules and conditions for naming
	variables
	7. Data types
	8. Calculations
	9. Boolean operations
	10. If condition cases
	11. Multiple condition cases If else
	12. Multiple condition cases If else If
	13. Switch case conditions
	14. Difference between switch and if condition states
	15. Write comments in programming
	16. While Loop
	17. Duplicates do while
	17. Duplicates do white

Learning and Teach	ing Strategies	
Strategies	1. Knowledge and Understanding CILOs (teaching strategies)	
	a) lectures	
	b) discussion	
	c) practical classes	
	d) independent study	
	e) case study	
	f) brainstorm	
	2. Alignment of Intellectual Skills CILOs	

a)	Lectures,
b)	tutorials,
c)	group discussions,
d)	practical classes,
e)	brainstorming,
independent stu	udy

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.00					
Unstructured SWL (h/sem)12Unstructured SWL (h/w)0.80					
Total SWL (h/sem) 75					

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment			100%	-	-

Delivery Pla	Delivery Plan (Weekly Syllabus)				
	Materials Covered				
Week 1	C++ programming basic				
Week 2	the introduction				
Week 3	numeric data types arithmetic				
Week 4	Identifythetypes of mathematical operations and the tools used in them				
Week 5	Learn about input and output tools				
Week 6	Understanding the basic variables and declaring them				
Week 7	Using types of variables and how to write them				
Week 8	Conditional tools and writing a program about if				
Week 9	Termination toolblocks				
Week 10	Writing if/else clauses with a computer application				
Week 11	Using the switch conditional tool with examples				

Week 12	Writing a program for a while loop with examples
Week 13	Write a program about the for loop
Week 14	How to use continue statesmen
	With practical examples
Week 15	Use the mathematical function library
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	PROGRAMMING WITH C++, JOHN R.	YES		
	HUBBARD, SCHAUM'S OUTLINE SERIES,			
	McGRAW-HILL, 2000.			
Recommended Texts	-	-		
Websites	-	-		

Second Semester

Module Information						
Module Title	Sport		Module Delivery			
Module Type	Su	pport	Theory			
Module Code	SPF	RT209	Lecture			
ECTS Credit		2	Lab			
SWL		50	Tutorial			
			Practical			
			Seminar			
Module level	1	Semester of Delivery	1			
Module Leader	MuaidWaleed	College	Electromechanical Eng.			
			Dept.			
Module Leader	Asst. Prof.	e-mail	10755@uotechnology.edu.iq			
Academic Title						
Module Tutor	-	Module Leader's	MsC.			
		Qualification				
Peer Reviewer	-	E-mail	10755@uotechnology.edu.iq			
Name						
Scientific	- E-mail		-			
Committee						
Approval Date						
	-	Version Number	-			

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learnin	ims, Learning Outcomes and Inductive Contents			
Module Aims		Develop the ability of the students to		
		understand the main sport activities		
Module Learning Outcomes		In this course, students will learn:		
		1- Football		
		2- Basketball		
Inductive Contents		• Football		
		• Basketball		
Learning and Teaching	Strategies			
Strategies	The branch use a problem based learning which new and student			
	active method. The method help the student getting the program			
	outcomes.			

Student Workload (SWL)					
Structured SWL (h/sem)33Structured SWL (h/w)2.0					
Unstructured SWL (h/sem)17Unstructured SWL (h/w)1.13					
Total SWL (h/sem) 50					

Module Evaluation					
		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-
Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 - 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

	Materials Covered
Week 1	Sports - concept, benefits and types
Week 2	Fitness - the concept and elements of fitness
Week 3	Football - concept + history
Week 4	Football - basic soccer skills
Week 5	Football Law - Article 1, 2
Week 6	Football Law - Articles 3, 4, 5
Week 7	Basketball - concept + history
Week 8	Basketball - basic basketball skills
Week 9	Anatomy
Week 10	The skeleton
Week 11	Circulatory system
Week 12	Muscular system - concept + muscle injuries
Week 13	Scouting - concept + stages + scouting law
Week 14	Biorhythm - concept + benefits + historical overview
Week 15	Biorhythm cycles
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the		
		library		
Required Texts	Volleyball (history - skills - plans - game	Pdf		
	management - and training)			
	Series/basketball basics			
	Sports training and future prospects			
	Applications in sensory education			
	Rapid methods and techniques of sports training			
	Football law			
Recommended Texts	-	-		
Websites	-	-		

Module Information					
Module Title	Advanced M	Mathematics II	Module Delivery		
Module Type	В	asic	Theory		
Module Code	ADN	MT210	Lecture		
ECTS Credit		6	Lab		
SWL	1	50	Tutorial		
			Practical		
			Seminar		
Module level	1	Semester of Delivery	1		
Module Leader	FatenNoaman	College	Electromechanical Eng.		
	Abdullah		Dept.		
Module Leader	Assistance Prof	E-mail	eme@uotechnology.edu.iq		
Academic Title					
Module Tutors	-	Module Leader's	Phd. Mech. Eng		
		Qualification			
Peer Reviewer	-	E-mail	50241@uotechnology.edu.iq		
Name					
Scientific	-	E-mail	-		
Committee					
Approval Date					
-	-	Version Number	-		

Relation with other Modules			
Prerequisite Module - Semester -			
Co-requisite Module	_	Semester	-

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	The students will learn the second part of the basic math and			
	principle of statistics.			
Module Learning Outcomes	In this course, for students will learn			
	9. Differentiation (Derivative Definition, Techniques of			
	Derivative, Applications)			
	10. Differentiation (Parametric Equations, Implicit			
	Differentiation)			
	11. Integration (Definite Integrals, Properties, Relation			
	Between Indefinite & definite Integrals)			
	12. Differential Equations D.E. 1st degree equation			
	13. Differential Equations D.E. 2 nddegree equation			
	14. Vector.			
	15. Random variable and probability distribution			

	16. Engineering Statistic.
Inductive Contents	 In this course, students will learn: Differentiation (Derivative Definition, Techniques of Derivative, Applications) Area between Curve and y-axis, Area Between Two Curves) Differential Equations D.E, 1st degree equation: (1-Variable Separable, 2- reduction into separable, 3-Linear differential equation, 4- non linear differential equation 5- exact differential equation 6- Bernoulli's Equations 7- reduction into exact) Differential Equations D.E. 2nd degree equation: Vector Definition of random variable, discrete and continuous random variables Types of statistics (mean, variance, and standard deviation).

Learning and Teaching Strategies					
Strategies The branch use a problem based learning which new and student activ					
method. The method help the student getting the program outcomes.					

Student Workload (SWL)				
Structured SWL (h/sem)63Structured SWL (h/w)4.0				
Unstructured SWL (h/sem)87Unstructured SWL (h/w)			5.8	
Total SWL (h/sem) 150				

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2, 3
Assessment	Assignments	1	10%	7	LO # 4, 5, 6
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	9	LO # 1 – 6
Assessment	Exam				
	Final Exam	3 hr	50%	17	All

Total assessment	100%	-	-
------------------	------	---	---

Delivery P	an (Weekly Syllabus)
	Materials Covered
Week 1	Introduction to sequence, convergence of sequence
Week 2	Introduction to series, testing rule for series
Week 3	Taylor series
Week 4	Binomial series
Week 5	Fourier series
Week 6	Introduction to Laplace transform
Week 7	Laplace properties
Week 8	Inverse Laplace transform
Week 9	Introduction to Solution of inverse Laplace transform
Week 10	Mid-term Exam
Week 11	Examples of solution of inverse Laplace transform
Week 12	Introduction to solution of differential equation using Laplace transform
Week 13	Examples of solution of differential equation using Laplace transform
Week 14	Introduction to double integral
Week 15	Examples of double integral
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
-	Available in the library			
Required Texts	Advancing Differentiation: Thinking and Learning by Richard M. Cash, Ed.D. 2017	YES		
Recommended Texts	-	-		
Websites	ALL academic Publications in Scopus and Web of Science.	-		

Module Inform	nation			
Module Title	Electrical Machines II		Module Delivery	
Module Type	Core		TheoryLectureLab	
Module Code	ELMA211		■ Tutorial □ Practical Sem_ar	
ECTS Credit	5			
SWL	125			
Module level 1		Semester of Delivery	1	
Module Leade	er Ahlam L. Shuraiji	College	Electromechanical Eng. Dept.	
Module LeaderAssistanceAcademicProfTitle		e-mail	Ahlam L. Shuraiji@uotechnology.edu.iq	
Module Tutor	-	Module Leader's Qualification	PhD. in Mech. Eng.	
Peer Reviewer - Name		e-mail		
Scientific Committee Approval Date	- e	e-mail	-	
	-	Version Number	-	

Relation with other Modules			
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

The main aims of this course are provide learners with knowledge and an understanding of the working principle, and constructional features of transformer and three-phase induction motor. Introduce the concept of equivalent electrical circuit for both transformer and induction motor evaluate efficiency of the machines under different load operation conditions.
monstrate the ability to
UnderstandthebasicUnderstandthebasicconstructionandworkingorinciple of transformer.Mathematicallypredictedtheransformer performance throughheequivalentcircuitheequivalentcircuitheequivalentconnectioncircuitoftheransformer.Explaindifferentconnectionofhree-phaseEvaluatetransformerefficiencyatdifferentloadingconditions.Understandthebasicconstructionandworkingfor

	induction motor
	• Understand the concept of synchronous speed, slip, rotor voltage and its frequency
	• Predicate the motor equivalent circuit parameters using open and short circuit tests.
	• Analysis torque equation for different operation states.
	• Understand the power flow in the 3-phase induction motor and predicate the motor efficiency.
Inductive Contents	As types of an AC electrical machine, transformer and three-phase induction motor are playing essential part in our life regarding power transmission and consuming, this course deals with transformer and three-phase induction motor. It is essentially providing knowledge of the transformer and three-phase induction motor construction, working principle. It is also introducing performance analysis of the transformer based on its equivalent circuit. Moreover, it deals with prediction of the motor equivalent circuit parameters in order to analysis the motor performance including torque and efficiency.

Learning and Teaching Strategies		
Strategies	Theoretical lectures (give the lecture to students in person) Practical lectures (work in the laboratory to achieve the practical aspect)	

Student	Workload	(SWL)
---------	----------	-------

Structured SWL (h/sem)	63	Structured SWL (h/w)	4.0
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4.13
Total SWL (h/sem)	125		-

Module Eval	uation				
		Time/No.	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	1	10%	5	LO # 1 , 2, 3
Assessment	Assignments	1	10%	7	LO # 4 , 5
	Projects / Lab.	1	-		LO # 3
	Report	-	10%	-	-
Summative Assessment	Midterm Exam	1.5 hr	20%	9	LO # 1 – 5
	Final Exam	3 hr	50%	17	All
Total assessment			100%	-	-

Delivery Plan (Weekly Syllabus)			
	Introduction to dynamic.		
Week 1	Transformer construction and operating principle		
Week 2	EMF equation of the transformer		
Week 3	Equivalent circuit of transformer		
Week 4	Rules for referring		
Week 5	Transformer tests		

Week 6	Transformer efficiency
Week 7	Auto transformer
Week 8	Three-phase transformer
Week 9	Midterm exam
Week 10	Three phase induction motor
Week 11	Operating principle of induction motor
Week 12	Effect of slip in rotor current, impedance and power factor
Week 13	Torque equation of induction motor
Week 14	Equivalent circuit of induction motor
Week 15	Power diagram of three phase induction motor

		Module Information		
Module Title	Electronics Circuits		Module Delivery	
Module Type	Co	ore	Theory	
Module Code	ELC	I212	Lecture Lecture	
ECTS Credit	5	5	Lab	
SWL	12	25	Tutorial	
			Practical	
			Seminar	
Module level	1	Semester of	1	
		Delivery		
Module Leader	JenanAyadNamuq	College	Electromechanical Eng. Dept.	
Module Leader	Lec	e-mail	@uotechnology.edu.iq	
Academic Title				
Module Tutor	-	Module Leader's	Dr.	
		Qualification		
Peer Reviewer	-	E-mail	jinan.a.namuq@uotechnology.edu.iq	
Name				
Scientific	-	E-mail	-	
Committee				
Approval Date				
	-	Version Number	-	

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Module Aims	Students successfully completing this course
	should be able to perform the following tasks with minimum degree of difficulty:
	 The ability to compute Simplified Structure and Mode of operation BJTS transistors circuits an understanding the basic structure-Characterizing BJT amplifier- CE amplifier Multistage amplifier- Differential amplifier; an introduction to field effect transistor Characteristic of JEFT and biasing circuits, COSFET, DMONSFET, MOSFET, C/CS of transistor MOSFET, amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG; the ability to evaluate power amplifiers class A, class B, class AB, class C; the ability to use oscillator Feedback loop and the oscillator circuits, LC-oscillator circuits, crystal oscillators.
Module Learning Outcomes	Most students will be able to calculate BJTS transistors circuits with a reasonable degree of skill.
	 Students should be able to use the basic structure- Characterizing BJT amplifier- CE amplifier- BC amplifier- Multistage amplifier- Differential amplifier. Students should be made an
	• Students should be made an introduction to field effect transistor Characteristic of JEFT and biasing circuits, COSFET, D-MONSFET,

	 MOS-FET, C/CS of transistor MOSFET, amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG. The students should be made aware of the resonance circuits interpretation. The students should be able to evaluate power amplifiers class A, class B, class AB, class C. The students should be able to use oscillator Feedback loop and the oscillator criterion, the oscillator circuits, RC- oscillator circuits, LC- oscillator circuits, crystal oscillators.
Inductive Contents	 Fundamentals of DC Circuit. Diodes. Introduction to the Transistor The Transistor Switch Fundamentals of AC Circuits Filters Resonant Circuits Transistor Amplifiers Oscillators The Transformer Power Supply Circuits

Learning and Teachin	g Strategies
Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)			
Structured SWL (h/sem)63Structured SWL (h/w)4.0			
Unstructured SWL (h/sem)62Unstructured SWL (h/w)			
Total SWL (h/sem)	100	-	-

Module Evaluation					
		Time/No.	Weight	Week	Relevant Learning
			(Marks)	Due	Outcome
Formative	Quizzes	-	10%	-	-

Assessment	Assignments	1	10%	7	LO # 1, 2, 3
	Projects /	-	-	-	-
	Lab.				
	Report	1	10%	12	LO# 1, 2, 3, 4, 5, 6, 7
Summative	Midterm	1.5 hr	20%	11	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Pl	an (Weekly Syllabus)
	Materials Covered
Week 1	Bipolar junction Transistors (BJTS)
Week 2	Simplified Structure and Mode of operation
Week 3	Type of transistor Connection
Week 4	characteristic curve- load line-connection analysis of each type of connection
Week 5	The BJT as an amplifier an as a switch
Week 6	Biasing in BJT amplifier circuits, BJT amplifier: The basic structure
Week 7	Characterizing BJT amplifier-CE amplifier- BC amplifier- Multistage amplifier-
	Differential amplifier
Week 8	Field Effect transistor (FET), Characteristic of JEFT and biasing circuits
Week 9	COSFET, D-MONSFET, MOS-FET, C/CS of transistor MOSFET
Week 10	amplifying circuits, Equivalent circuit, amplifier types CS, CD, CG
Week 11	Power Amplifiers: class A, class B, class AB, class C
Week 12	Oscillator: Feedback loop and the oscillator criterion
Week 13	the oscillator circuits, RC
Week 14	oscillator circuits, LC- oscillator circuits
Week 15	crystal oscillators
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources			
	Text	Available in the	
		library	
Required Texts	Electronic Devices, Thomas L. Floyd, 10th	Pdf	
	Edition, 2018		
Recommended Texts	-	-	
Websites	-	-	

	Mo	odule Information	
Module Title	Fluid N	Mechanics	Module Delivery
Module Type	(Core	Theory
Module Code	FLN	MA213	
ECTS Credit		5	Lab
SWL		125	Tutorial
			Practical
			Seminar
Module level	1	Semester of Delivery	
Module Leader	Hashim A.	College	Electromechanical Eng.
	Hussain		Dept.
Module Leader	Prof.	e-mail	50005@uotechnology.edu.iq
Academic Title			
Module Tutor	- Module Leader's		PhD. Mech. Eng.
		Qualification	
Peer Reviewer - E-mail		E-mail	-
Name			
Scientific	-	E-mail	-
Committee			
Approval Date			
	-	Version Number	-

	Relation with other Module	es	
Prerequisite Module	-	Semester	-
Co-requisite Module	-	Semester	-

Module Aims, Learning	Module Aims, Learning Outcomes and Inductive Contents		
Module Aims	Students learn how to apply the basic principles from fluid mechanics to calculate the force and power developed or consumed in the thermodynamic engineer		
Module Learning Outcomes	Students learn how to apply the basic principles from fluid mechanics to calculate the force and power developed or consumed in the Fluids. Students will also learn how to handle an open-ended design problem in the team project. The question asked at the beginning of this section can also be asked in a slightly different way.		
Inductive Contents	Students learn how to apply the basic principles from fluid mechanics to calculate the pressure, velocity, and mass flow rates developed fluid flow in pipes. Students will also learn how to handle an open-ended design problem in the team project.		

Learning and Teaching Strategies

Strategies	The branch use a problem based learning which new and student active
	method. The method help the student getting the program outcomes.

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.0					
Unstructured SWL (h/sem)62Unstructured SWL (h/w)4.13					
Total SWL (h/sem) 125 -					

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	1	-	14	LO # 5
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

	Delivery Plan (Weekly Syllabus)			
	Materials Covered			
Week 1	FLUID MECHANICS DEFINITION			
Week 2	INTRODUCTION			
Week 3	PHYSICAL PROPERTIES OF FLUIDS			
Week 4	NEWTONIAN ^S LAW IN VISCOSITY AND MOMENTUM TRANSFER			
Week 5	STATIC FLUIDS			
Week 6	SOLVED EXAMPLES OF STAFIC FLUID WITH APPLICATIONS			
Week 7	FLUID MEASUREMENTS DEVICES			
Week 8	APPLICATIONS OF FLUID MEASUREMENTS DEVICES			
Week 9	DYNAMIC FLUIDS WITH APPLICATIONS			
Week 10	APPLICATIONS OF DYNAMIC FLUIDS			
Week 11	BERNOULLI'S EQUATION			
Week 12	APPLICATIONS OF DYNAMIC FLUIDS			

Week 13	CONTINUITY EQUATION AND RENOLD NUMBER APPLICATIONS
Week 14	SOLVED EXAMPLES OF DYNAMIC FLUIDs
Week 15	MID EXAMINATION

	Learning and Teaching Resources				
	1-Basic Fluid Mechanics	Available in the			
	Zoeb HusainPrincipal Hi-Point College of	library			
	Engineering and Technology				
	Hyderabad. 2009				
Required Texts	2-Rood, E. P., and D. P. Telionis, "JFE Policy on	-			
	Reporting Uncertainties in Experimental				
	Measurements and Results," Transactions of				
	ASME, Journal of Fluids Engineering, 1991				
Recommended Texts		-			
Websites	-	-			

	nation		
Module Title	Heat Transfer		Module Delivery
Module Type	Core		Theory Lecture
Module Code	HETR214		Lab Tutorial
ECTS Credit	5		PracticalSeminar
SWL	125		
Module level	1	Semester of Delivery	
Module Leader	AbduljabbarMuttair Ahmed	College	Electromechanical Eng. Dept.
Module	Lecture	e-mail	Abduljabbar.M.Ahmed@uotechnology.edu.iq

Leader Academic Title			
Module Tutor	-	Module Leader's Qualification	PhD. Mech. Eng.
Peer Reviewer Name	-	E-mail	_
Scientific Committee Approval Date	-	E-mail	-
	-	Version Number	-

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning	g Outcomes and Inductive Contents
Module Aims	 Defining the heat transfer modes concepts. Defining the theoretical basics of the conduction heat transfer coincided with a laboratory experiment. Defining the theoretical basics of the forced and free convective heat transfer coincided with a laboratory experiment. Defining the theoretical basics of the radiation heat transfer. Defining the theoretical basics of the heat exchangers coincided with a laboratory experiment. Defining the theoretical basics of the mixed modes of heat transfer.
Module Learning Outcomes	Anability to identify, fundamental,formulate, and solve heat transferproblems by applying principles of engineering, science, and mathematics.
Inductive Contents	Attendant Scientific lectures with method of problem- based learning (Pbl) and lectures video

Learning and Teacl	hing Strategies
Strategies	The teaching of heat transfer as theory and mathematically, the Conduction heat transfer, heat transfer through fins, two dimensional steady state heat conduction, one and two dimensional unsteady state heat conduction, convective heat transfer, forced and natural convection, thermal radiation, and heat exchangers. The Exams (Mid. exam, quizzes, and other activities for evaluation, Lab with exam, and three hours final exam).

Student Workload (SWL)					
Structured SWL (h/sem)63Structured SWL (h/w)4.0					
Unstructured SWL (h/sem)62Unstructured SWL (h/w)4.13					
Total SWL (h/sem) 125 -					

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	1	-	14	LO # 5
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 5
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
Total assessment		100%	-	-	

Delivery Plan (Weekly Syllabus)		
	Materials Covered	
Week 1	Introduction of heat transfer modes.	
Week 2	Steady state conduction: thermal resistance of the plane wall and radial system.	
Week 3	Conduction – convection system: fins.	
Week 4	Heat transfer from fine.	
Week 5	Unsteady state conduction.	
Week 6	Convection: (laminar) boundary layer for plate and pipe.	

Week 7	Convection: (turbulent) boundary layer for plate and pipe.
Week 8	Force convection (laminar) for pipe and tube low.
Week 9	Force convection (turbulent) for pipe and tube low.
Week 10	Free convection vertical plate.
Week 11	Free convection horizontal plate.
Week 12	Radiation heat transfer of black body.
Week 13	Radiation heat transfer of nonblack body.
Week 14	Heat exchanger: the overall heat transfer coefficient and types of heat exchanger.
Week 15	The Log Mean Temperature Difference and effectiveness of heat exchanger.

	Learning and Teaching Resources				
	Heat Transfer J.P Holman. Tenth Edition, McGraw-Hill, 2010	Available in the library			
Required Texts	 Heat and Mass Transfer: A Practical Approach, Yunus A. Çengel, Third Edition, McGraw-Hill, 2006. International Journal of Heat and Mass Transfer. 	-			
Recommended Texts	ALL academic Publications in Scopus and Web of Science.	-			
Websites	-	-			

Module Information				
Module Title	English Language II	Module Delivery		
Module Type	Support	Theory		
Module Code	ENLA207	□ Lecture		
ECTS Credit	2			

SWL		50	 Tutorial Practical Seminar
Module level	1	Semester of Delivery	1
Module Leader	Mohammed KadhimEdan	College	Electromechanical Eng. Dept.
Module Leader Academic Title	Prof.	e-mail	eme@uotechnology.edu.iq
Module Tutor	-	Module Leader's Qualification	PhD. in Elec. Eng.
Peer Reviewer Name	-	E-mail	
Scientific Committee Approval Date	-	E-mail	-
-	-	Version Number	-

Relation with other Modules				
Prerequisite Module	-	Semester	-	
Co-requisite Module	-	Semester	-	

Module Aims, Learning Outcomes and Inductive Contents			
Module Aims	• Defining the grammar writing skills		
	• Defining verbal presentation skills		
	• Defining of the content that needs to be		
	presented		
	• Organization of the content to make it		
	easy to be followed.		
	• Data presentation in such audience is		
	easily able to grasp significance		
Module Learning Outcomes	Students will learn:		
	• Tense types, and parts of speech.		
	• Sentence structure, affixes & prefixes,		
	and Engineering Vocabulary.		
	• Punctuations, and the differences		
	between British and American English.		
	• Writing skills (essay and Email)		
	• Reading Skills (how to be an effective		
	reader).		

	• Presentation Skills and discussion skills.		
Inductive Contents	□ Part of speech, and Sentence		
	Structure		
	□ Tense types, and Passive Voice		
	□ Transitions Words		
	□ How to Write an Email		
	□ How to write an essay		
	□ Reading Skills		
	□ Vocabulary, Punctuation, and the		
	way to Vocabulary Development.		
	Discussion Skills, and How to		
	give a good presentation		
	☐ Affixes, Prefixes , and		
	Differences between British and		
	American English.		

Learning and Teaching Strategies				
Strategies The branch use a problem based learning which new and student active				
	method. The method help the student getting the program outcomes.			

Student Workload (SWL)				
Structured SWL (h/sem)33Structured SWL (h/w)2.0				
Unstructured SWL (h/sem) 17		Unstructured SWL (h/w)	-	
Total SWL (h/sem)	50	-	-	

Module Evaluation					
		Time/No.	Weight	Week Due	Relevant Learning
			(Marks)		Outcome
Formative	Quizzes	1	10%	5	LO # 1, 2
Assessment	Assignments	1	10%	7	LO # 3, 4
	Projects /	-	-	-	-
	Lab.				
	Report	-	10%	-	-
Summative	Midterm	1.5 hr	20%	10	LO # 1 – 4
Assessment	Exam				
	Final Exam	3 hr	50%	17	All
,	Total assessment			-	-

Delivery Plan (Weekly Syllabus)

	Materials Covered
Week 1	Parts of speech
Week 2	Sentence Structure: Sentence Types
Week 3	Tenses
Week 4	Transitions Words
Week 5	How to Write an Email in English
Week 6	Discussion Skills
Week 7	How to write an essay
Week 8	How to be an effective reader
Week 9	Classroom Language
Week 10	Engineering Vocabulary
Week 11	Vocabulary Development
Week 12	Punctuation
Week 13	Presentation Language
Week 14	Affixes & Prefixes
Week 15	Differences between British and American English
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources		
	Text	Available in the
		library
Required Texts		-
Recommended Texts		-
Websites	-	-